1
|
Kaur G, Chawla S, Kumar P, Singh R. Advancing Vaccine Strategies against Candida Infections: Exploring New Frontiers. Vaccines (Basel) 2023; 11:1658. [PMID: 38005990 PMCID: PMC10674196 DOI: 10.3390/vaccines11111658] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/22/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Candida albicans, along with several non-albicans Candida species, comprise a prominent fungal pathogen in humans, leading to candidiasis in various organs. The global impact of candidiasis in terms of disease burden, suffering, and fatalities is alarmingly high, making it a pressing global healthcare concern. Current treatment options rely on antifungal drugs such as azoles, polyenes, and echinocandins but are delimited due to the emergence of drug-resistant strains and associated adverse effects. The current review highlights the striking absence of a licensed antifungal vaccine for human use and the urgent need to shift our focus toward developing an anti-Candida vaccine. A number of factors affect the development of vaccines against fungal infections, including the host, intraspecies and interspecies antigenic variations, and hence, a lack of commercial interest. In addition, individuals with a high risk of fungal infection tend to be immunocompromised, so they are less likely to respond to inactivated or subunit whole organisms. Therefore, it is pertinent to discover newer and novel alternative strategies to develop safe and effective vaccines against fungal infections. This review article provides an overview of current vaccination strategies (live attenuated, whole-cell killed, subunit, conjugate, and oral vaccine), including their preclinical and clinical data on efficacy and safety. We also discuss the mechanisms of immune protection against candidiasis, including the role of innate and adaptive immunity and potential biomarkers of protection. Challenges, solutions, and future directions in vaccine development, namely, exploring novel adjuvants, harnessing the trained immunity, and utilizing immunoinformatics approaches for vaccine design and development, are also discussed. This review concludes with a summary of key findings, their implications for clinical practice and public health, and a call to action for continued investment in candidiasis vaccine research.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Department of Biotechnology, Chandigarh College of Technology (CCT), Chandigarh Group of Colleges (CGC), Landran, Mohali 140307, India
| | - Sonam Chawla
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Piyush Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| | - Ritu Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Sector 62, Noida 201309, India; (S.C.)
| |
Collapse
|
2
|
Mechanisms of Neuroinvasion and Neuropathogenesis by Pathologic Flaviviruses. Viruses 2023; 15:v15020261. [PMID: 36851477 PMCID: PMC9965671 DOI: 10.3390/v15020261] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/07/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
Flaviviruses are present on every continent and cause significant morbidity and mortality. In many instances, severe cases of infection with flaviviruses involve the invasion of and damage to the central nervous system (CNS). Currently, there are several mechanisms by which it has been hypothesized flaviviruses reach the brain, including the disruption of the blood-brain barrier (BBB) which acts as a first line of defense by blocking the entry of many pathogens into the brain, passing through the BBB without disruption, as well as travelling into the CNS through axonal transport from peripheral nerves. After flaviviruses have entered the CNS, they cause different neurological symptoms, leading to years of neurological sequelae or even death. Similar to neuroinvasion, there are several identified mechanisms of neuropathology, including direct cell lysis, blockage of the cell cycle, indication of apoptosis, as well as immune induced pathologies. In this review, we aim to summarize the current knowledge in the field of mechanisms of both neuroinvasion and neuropathogenesis during infection with a variety of flaviviruses and examine the potential contributions and timing of each discussed pathway.
Collapse
|
3
|
Sahu SR, Bose S, Singh M, Kumari P, Dutta A, Utkalaja BG, Patel SK, Acharya N. Vaccines against candidiasis: Status, challenges and emerging opportunity. Front Cell Infect Microbiol 2022; 12:1002406. [PMID: 36061876 PMCID: PMC9433539 DOI: 10.3389/fcimb.2022.1002406] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/02/2022] [Indexed: 11/13/2022] Open
Abstract
Candidiasis is a mycosis caused by opportunistic Candida species. The occurrence of fungal infections has considerably increased in the last few years primarily due to an increase in the number of immune-suppressed individuals. Alarming bloodstream infections due to Candida sp. are associated with a higher rate of morbidity and mortality, and are emerged as major healthcare concerns worldwide. Currently, chemotherapy is the sole available option for combating fungal diseases. Moreover, the emergence of resistance to these limited available anti-fungal drugs has further accentuated the concern and highlighted the need for early detection of fungal infections, identification of novel antifungal drug targets, and development of effective therapeutics and prophylactics. Thus, there is an increasing interest in developing safe and potent immune-based therapeutics to tackle fungal diseases. In this context, vaccine design and its development have a priority. Nonetheless, despite significant advances in immune and vaccine biology over time, a viable commercialized vaccine remains awaited against fungal infections. In this minireview, we enumerate various concerted efforts made till date towards the development of anti-Candida vaccines, an option with pan-fugal vaccine, vaccines in the clinical trial, challenges, and future opportunities.
Collapse
Affiliation(s)
- Satya Ranjan Sahu
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Swagata Bose
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Manish Singh
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Premlata Kumari
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Abinash Dutta
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
| | - Bhabasha Gyanadeep Utkalaja
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Shraddheya Kumar Patel
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- Regional center of Biotechnology, Faridabad, India
| | - Narottam Acharya
- Laboratory of Genomic Instability and Diseases, Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, India
- *Correspondence: Narottam Acharya, ;
| |
Collapse
|
4
|
Carmo RLD, Alves Simão AK, Amaral LLFD, Inada BSY, Silveira CF, Campos CMDS, Freitas LF, Bonadio V, Marussi VHR. Neuroimaging of Emergent and Reemergent Infections. Radiographics 2020; 39:1649-1671. [PMID: 31589575 DOI: 10.1148/rg.2019190020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Infectious diseases emerge and reemerge over the years, and many of them can cause neurologic disease. Several factors contribute to the emergence and reemergence of these conditions, including human population growth, an increase in international travel, the geographic expansion of recognized pathogens to areas where they were previously nonendemic, and greater contact with wild animal reservoirs. The antivaccination social movement has played an important role in the reemergence of infectious diseases, especially some viral conditions. The authors review different viral (arboviruses such as dengue, chikungunya, and Zika virus; enterovirus 71; measles; and influenza), bacterial (syphilis, Lyme disease, and listeriosis), and parasitic (Chagas disease) diseases, focusing primarily on their neurologic complications. Although there are several additional infectious diseases with central nervous system manifestations that could be classified as emergent or reemergent, those listed here are the most relevant from an epidemiologic standpoint and are representative of important public health issues on all continents. The infections caused by these pathogens often show a variety of neuroimaging patterns that can be identified at CT and MRI, and radiology is central to the diagnosis and follow-up of such conditions. Given the increasing relevance of emerging and reemerging infections in clinical practice and public health scenarios, radiologists should be familiar with these infections. Online supplemental material is available for this article. ©RSNA, 2019.
Collapse
Affiliation(s)
- Rafael Lourenço do Carmo
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Aylla Keiner Alves Simão
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Lázaro Luís Faria do Amaral
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Bruno Shigueo Yonekura Inada
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Camila Filardi Silveira
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | | | - Leonardo Furtado Freitas
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Victor Bonadio
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| | - Victor Hugo Rocha Marussi
- From the Department of Neuroradiology, A Beneficência Portuguesa de São Paulo, R. Maestro Cardim 769, São Paulo, SP 01323-001, Brazil
| |
Collapse
|
5
|
Czepiel J, Gdula-Argasińska J, Biesiada G, Bystrowska B, Jurczyszyn A, Perucki W, Sroczyńska K, Zając A, Librowski T, Garlicki A. Fatty acids and selected endocannabinoids content in cerebrospinal fluids from patients with neuroinfections. Metab Brain Dis 2019; 34:331-339. [PMID: 30519835 PMCID: PMC6351517 DOI: 10.1007/s11011-018-0347-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 11/15/2018] [Indexed: 10/27/2022]
Abstract
Neuroinfections are a significant medical problem and can have serious health consequences for patients. Their outcome, if not fatal, can be associated with permanent residual deficits. Cerebrospinal fluid (CSF) examination is commonly used for meningitis confirmation. Fatty acids (FA) are precursors of lipid mediators with pharmacological activity. They actively modulate inflammation as well as contribute to its resolution. Therefore the aim of this study was to determine the FA and selected endocannabinoids (ECB) content in the CSF obtained from patients with bacterial (BM) and viral meningitis (VM) using chromatographic techniques. A significantly lower level of saturated FA was found in patients with BM and VM as compared to controls. There was a significantly higher concentration of long-chain monounsaturated FA and polyunsaturated n-6 FA in the CSF obtained from patients with neuroinfection. Moreover, a significant reduction of n-3 FA in CSF obtained from patients with BM and VM was demonstrated. The highest amount of ECB was detected in the CSF of patients with VM: eicosapentaenoyl ethanolamide (1.65 pg/mL), docosahexaenoyl ethanolamide (655.5 pg/mL) and nervonoyl ethanolamide (3.09 ng/mL). Results indicate the participation of long-chain monounsaturated and polyunsaturated FA and their derivatives in the inflammatory process and likely in the process of resolution of inflammation during neuroinfection. It seems that the determination of the FA and ECB profile in CSF may be a valuable biomarker of health and may allow the development of new pharmacological strategies, therapeutic goals and fatty acids supplementation necessary in the fight against inflammation of the central nervous system.
Collapse
Affiliation(s)
- Jacek Czepiel
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Gdula-Argasińska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland.
| | - Grażyna Biesiada
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| | - Beata Bystrowska
- Chair of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Krakow, Poland
| | - Artur Jurczyszyn
- Department of Hematology, Jagiellonian University Medical College, Krakow, Poland
| | - William Perucki
- Department of Medicine, John Dempsey Hospital, University of Connecticut, Farmington, CT, USA
| | - Katarzyna Sroczyńska
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Anna Zając
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Tadeusz Librowski
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Aleksander Garlicki
- Department of Infectious and Tropical Diseases, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
6
|
Nami S, Mohammadi R, Vakili M, Khezripour K, Mirzaei H, Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review. Biomed Pharmacother 2018; 109:333-344. [PMID: 30399567 DOI: 10.1016/j.biopha.2018.10.075] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/02/2018] [Accepted: 10/14/2018] [Indexed: 11/28/2022] Open
Abstract
Fungal infections include a wide range of opportunistic and invasive diseases. Two of four major fatal diseases in patients with human immunodeficiency virus (HIV) infection are related to the fungal infections, cryptococcosis, and pneumocystosis. Disseminated candidiasis and different clinical forms of aspergillosis annually impose expensive medical costs to governments and hospitalized patients and ultimately lead to high mortality rates. Therefore, urgent implementations are necessary to prevent the expansion of these diseases. Designing an effective vaccine is one of the most important approaches in this field. So far, numerous efforts have been carried out in developing an effective vaccine against fungal infections. Some of these challenges engaged in different stages of clinical trials but none of them could be approved by the United States Food and Drug Administration (FDA). Here, in addition to have a comprehensive overview on the data from studied vaccine programs, we will discuss the immunology response against fungal infections. Moreover, it will be attempted to clarify the underlying immune mechanisms of vaccines targeting different fungal infections that are crucial for designing an effective vaccination strategy.
Collapse
Affiliation(s)
- Sanam Nami
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Rasoul Mohammadi
- Department of Medical Parasitology and Mycology, School of Medicine/Infectious Diseases and Tropical Medicine Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahshid Vakili
- Department of Medical Mycology and Parasitology/Invasive Fungi Research Center (IFRC), School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Kimia Khezripour
- Department of Pharmacotherapy, School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamid Morovati
- Department of Medical Mycology and Parasitology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
7
|
Affiliation(s)
- Kenneth L Tyler
- From the Departments of Neurology, Medicine, and Immunology-Microbiology and the Section on Neuroinfectious Disease, University of Colorado School of Medicine, Aurora
| |
Collapse
|
8
|
Thompson H, Thakur K. Infections of the Central Nervous System in Returning Travelers and Immigrants. Curr Infect Dis Rep 2017; 19:45. [PMID: 28975470 DOI: 10.1007/s11908-017-0594-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW This review highlights current knowledge in travel-related neuroinfectious diseases, providing insight on approaches to prevention, diagnosis, and treatment of infections of the central nervous system (CNS) in travelers and immigrants. RECENT FINDINGS Updates on travel vaccine recommendations including vaccine-specific interactions with immunosuppressive agents, advances in Zika virus and dengue virus vaccine development, new diagnostic criteria for neurocysticercosis, updates on treatment approaches for tuberculosis meningitis. Increasing rates of travel are leading to the spread of known infectious diseases and the emergence of new diseases in travel medicine. Among these infections, neuroinfectious diseases carry significant morbidity and mortality. To reduce the effect of travel-related illness, appropriate pre-travel measures and up-to-date diagnostic and treatment strategies are essential for optimal outcomes. This review highlights important travel information relevant to neuroinfectious diseases for several populations including immunocompetent, immunocompromised, pregnant, and infant/children travelers. It also outlines the travel risk, clinical presentation, diagnosis, and management of a select list of neuroinfectious diseases by region, including neurocysticercosis, Zika virus, tuberculosis meningitis, rabies, and tick-borne encephalitis.
Collapse
Affiliation(s)
- Haley Thompson
- New York Medical College, 40 Sunshine Cottage Road, Valhalla, New York, 10595, USA
| | - Kiran Thakur
- Division of Critical Care and Hospitalist Neurology, Department of Neurology, Columbia University Medical Center, 177 Fort Washington Avenue, Milstein Hospital, 8GS-300, New York, NY, 10032, USA.
| |
Collapse
|
9
|
Bragazzi NL, Watad A, Sharif K, Adawi M, Aljadeff G, Amital H, Shoenfeld Y. Advances in our understanding of immunization and vaccines for patients with systemic lupus erythematosus. Expert Rev Clin Immunol 2017; 13:939-949. [DOI: 10.1080/1744666x.2017.1361321] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Nicola Luigi Bragazzi
- School of Public Health, Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Abdulla Watad
- Departement of Medicine ‘B’, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Kassem Sharif
- Departement of Medicine ‘B’, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Mohammad Adawi
- Faculty of Medicine, Baruch Padeh Medical Center, Bar-Ilan University, Israel
| | - Gali Aljadeff
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Howard Amital
- Departement of Medicine ‘B’, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yehuda Shoenfeld
- Departement of Medicine ‘B’, Sheba Medical Center, Tel-Hashomer, Ramat Gan, Israel
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
10
|
|
11
|
Abstract
PURPOSE OF REVIEW Zika virus (ZIKV) has only recently been exposed as a significant public health threat, and much of our limited knowledge of its pathogenesis and triggered immune responses were discovered in only the last few years. There are currently no ZIKV-specific therapeutics or vaccines available. This review seeks to bring the reader up-to-date with the latest developments in finding a way to combat this emerging infectious disease. RECENT FINDINGS Current strategies used for developing ZIKV vaccines or treatments follow proven methods used against other flaviviruses. Unfortunately, ZIKV carries many unique challenges, such as the need to target drugs and vaccines towards immunocompromised populations (pregnant mothers and fetuses), the risk of stimulating harmful immune responses (either autoimmune or antibody-dependent enhancement of infection in those with previous flavivirus exposure), frequently silent infection that may delay treatment and increase risk of transmission to others, and multiple routes of transmission (arthropod vector, sexual, bloodborne, and potentially other body fluids). SUMMARY Current medical recommendations are directed towards resolving symptoms and not the actual infection; however, ZIKV treatments and vaccines are in development. Vector control and travel restrictions to endemic areas may remain our only available interventions for some time.
Collapse
|