1
|
Fatemizadeh M, Riahi E, Hassanzadeh G, Torkaman-Boutorabi A, Radfar F, Farahmandfar M. Deep brain stimulation of the anterior cingulate cortex reduces opioid addiction in preclinical studies. Sci Rep 2025; 15:2065. [PMID: 39815019 PMCID: PMC11736074 DOI: 10.1038/s41598-025-86279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025] Open
Abstract
Substance Use Disorder (SUD) is a medical condition where an individual compulsively misuses drugs or alcohol despite knowing the negative consequences. The anterior cingulate cortex (ACC) has been implicated in various types of SUDs, including nicotine, heroin, and alcohol use disorders. Our research aimed to investigate the effects of deep brain stimulation (DBS) in the ACC as a potential therapeutic approach for morphine use disorder. Additionally, we measured c-Fos protein expression as an indicator of neural activity in the nucleus accumbens (NAc) and prefrontal cortex (PFC). Our findings indicate that high-frequency (130 Hz) DBS at different amperages, 150 µA and 200 µA in the ACC during the acquisition phase of morphine conditioned place preference (CPP) inhibited the rewarding properties of morphine. Furthermore, DBS at these intensities during the extinction phase facilitated the extinction and mitigated the reinstatement of morphine CPP triggered by drug priming. Morphine conditioning was associated with impaired novel object conditioning (NOR) and locomotor activity. While DBS in the acquisition and extinction phases at both intensities restored NOR memory, only DBS at 200 µA recovered locomotor activity in the open field test. Treatment with DBS at 200 µA decreased c-Fos protein expression in the NAc and PFC (compared to morphine-only group). In conclusion, our data indicate an intensity-dependent effect of ACC DBS on the acquisition, extinction, and reinstatement of morphine-induced CPP in rats. These findings suggest that ACC DBS could be a potential intervention for the treatment of morphine use disorder.
Collapse
Affiliation(s)
- Mahdi Fatemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 38, Italia Ave., Ghods St, Keshavarz Boulevard, Tehran, Iran
| | - Esmail Riahi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Poursina St, Keshavarz Blvd, 1417613151, Tehran, Iran.
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 38, Italia Ave., Ghods St, Keshavarz Boulevard, Tehran, Iran
| | - Anahita Torkaman-Boutorabi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 38, Italia Ave., Ghods St, Keshavarz Boulevard, Tehran, Iran
| | - Forough Radfar
- Department of Behavioral and Cognitive Sciences in Sports, Sports and Health Sciences Faculty, University of Tehran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, No. 38, Italia Ave., Ghods St, Keshavarz Boulevard, Tehran, Iran.
| |
Collapse
|
2
|
Chen D, Zhao Z, Shi J, Li S, Xu X, Wu Z, Tang Y, Liu N, Zhou W, Ni C, Ma B, Wang J, Zhang J, Huang L, You Z, Zhang P, Tang Z. Harnessing the sensing and stimulation function of deep brain-machine interfaces: a new dawn for overcoming substance use disorders. Transl Psychiatry 2024; 14:440. [PMID: 39419976 PMCID: PMC11487193 DOI: 10.1038/s41398-024-03156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/04/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024] Open
Abstract
Substance use disorders (SUDs) imposes profound physical, psychological, and socioeconomic burdens on individuals, families, communities, and society as a whole, but the available treatment options remain limited. Deep brain-machine interfaces (DBMIs) provide an innovative approach by facilitating efficient interactions between external devices and deep brain structures, thereby enabling the meticulous monitoring and precise modulation of neural activity in these regions. This pioneering paradigm holds significant promise for revolutionizing the treatment landscape of addictive disorders. In this review, we carefully examine the potential of closed-loop DBMIs for addressing SUDs, with a specific emphasis on three fundamental aspects: addictive behaviors-related biomarkers, neuromodulation techniques, and control policies. Although direct empirical evidence is still somewhat limited, rapid advancements in cutting-edge technologies such as electrophysiological and neurochemical recordings, deep brain stimulation, optogenetics, microfluidics, and control theory offer fertile ground for exploring the transformative potential of closed-loop DBMIs for ameliorating symptoms and enhancing the overall well-being of individuals struggling with SUDs.
Collapse
Affiliation(s)
- Danyang Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhixian Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jian Shi
- School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shengjie Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xinran Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhuojin Wu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yingxin Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Na Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhong Zhou
- Wuhan Global Sensor Technology Co., Ltd, Wuhan, Hubei, China
| | - Changmao Ni
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, Hubei, China
| | - Bo Ma
- Microsystems Technology Center, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junya Wang
- Microsystems Technology Center, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun Zhang
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei, China
| | - Li Huang
- Wuhan Neuracom Technology Development Co., Ltd, Wuhan, Hubei, China
| | - Zheng You
- Microsystems Technology Center, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Ping Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Zhouping Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Zammit Dimech D, Zammit Dimech AA, Hughes M, Zrinzo L. A systematic review of deep brain stimulation for substance use disorders. Transl Psychiatry 2024; 14:361. [PMID: 39237552 PMCID: PMC11377568 DOI: 10.1038/s41398-024-03060-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Pharmaco-psychiatric techniques remain the mainstay, first line treatments in substance use disorders (SUD), assisting in detoxification but largely ineffective at reducing dependence. The path to rehabilitation and freedom from addiction often proves uncertain and laborious for both patients and their significant others. Relapse rates for multiple substances of abuse are considerable and the number of SUD patients is on the increase worldwide. OBJECTIVE To assess efficacy of deep brain stimulation (DBS) as a therapeutic solution for SUDs. METHODS A systematic electronic database search of PubMed and EMBASE retrieved DBS addiction-focused studies on humans, of which a total of 26 (n = 71) from 2007 to 2023 were deemed eligible, including the first randomized controlled trial (RCT) in this field. This review was prospectively registered with PROSPERO: CRD42023411631. RESULTS In addressing SUDs, DBS targeting primarily the nucleus accumbens (NAcc), with or without the anterior limb of the internal capsule, presented encouraging levels of efficacy in reducing cravings and consumption, followed by remission in some subjects, but still reporting relapses in 73.2% of patients. CONCLUSIONS For treatment-refractory addictions DBS use seems limited to reducing cravings with a satisfactory degree of success, yet not clinically consistent in inducing abstinence, suggesting involvement of factors unaffected by DBS intervention. Furthermore, costs and the scale of the problem are such that DBS is unlikely to have a significant societal impact. Nevertheless, DBS may provide insight into the biology of addiction and is worthy of further research using increased methodological rigor, standardized outcome measures, and pre-established surgical protocols.
Collapse
Affiliation(s)
| | | | - Mark Hughes
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Ludvic Zrinzo
- UCL Institute of Neurology, Functional Neurosurgery Unit, Department of Clinical & Motor Neurosciences, University College London, London, UK
| |
Collapse
|
4
|
Li X, Kass G, Wiers CE, Shi Z. The Brain Salience Network at the Intersection of Pain and Substance use Disorders: Insights from Functional Neuroimaging Research. CURRENT ADDICTION REPORTS 2024; 11:797-808. [PMID: 39156196 PMCID: PMC11329602 DOI: 10.1007/s40429-024-00593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2024] [Indexed: 08/20/2024]
Abstract
Purpose of Review The brain's salience network (SN), primarily comprising the anterior insula and anterior cingulate cortex, plays a key role in detecting salient stimuli and processing physical and socioemotional pain (e.g., social rejection). Mounting evidence underscores an altered SN in the etiology and maintenance of substance use disorders (SUDs). This paper aims to synthesize recent functional neuroimaging research emphasizing the SN's involvement in SUDs and physical/socioemotional pain and explore the therapeutic prospects of targeting the SN for SUD treatment. Recent Findings The SN is repeatedly activated during the experience of both physical and socioemotional pain. Altered activation within the SN is associated with both SUDs and chronic pain conditions, characterized by aberrant activity and connectivity patterns as well as structural changes. Among individuals with SUDs, functional and structural alterations in the SN have been linked to abnormal salience attribution (e.g., heightened responsiveness to drug-related cues), impaired cognitive control (e.g., impulsivity), and compromised decision-making processes. The high prevalence of physical and socioemotional pain in the SUD population may further exacerbate SN alterations, thus contributing to hindered recovery progress and treatment failure. Interventions targeting the restoration of SN functioning, such as real-time functional MRI feedback, neuromodulation, and psychotherapeutic approaches, hold promise as innovative SUD treatments. Summary The review highlights the significance of alterations in the structure and function of the SN as potential mechanisms underlying the co-occurrence of SUDs and physical/socioemotional pain. Future work that integrates neuroimaging with other research methodologies will provide novel insights into the mechanistic role of the SN in SUDs and inform the development of next-generation treatment modalities.
Collapse
Affiliation(s)
- Xinyi Li
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Gabriel Kass
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Corinde E. Wiers
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| | - Zhenhao Shi
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104 USA
| |
Collapse
|
5
|
Ravichandran S, Sood R, Das I, Dong T, Figueroa JD, Yang J, Finger N, Vaughan A, Vora P, Selvaraj K, Labus JS, Gupta A. Early life adversity impacts alterations in brain structure and food addiction in individuals with high BMI. Sci Rep 2024; 14:13141. [PMID: 38849441 PMCID: PMC11161480 DOI: 10.1038/s41598-024-63414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Obesity and food addiction are associated with distinct brain signatures related to reward processing, and early life adversity (ELA) also increases alterations in these same reward regions. However, the neural mechanisms underlying the effect of early life adversity on food addiction are unknown. Therefore, the aim of this study was to examine the interactions between ELA, food addiction, and brain morphometry in individuals with obesity. 114 participants with high body mass index (BMI) underwent structural MRIs, and completed several questionnaires (e.g., Yale Food Addiction Scale (YFAS), Brief Resilience Scale (BRS), Early Traumatic Inventory (ETI)). Freesurfer 6 was applied to generate the morphometry of brain regions. A multivariate pattern analysis was used to derive brain morphometry patterns associated with food addiction. General linear modeling and mediation analyses were conducted to examine the effects of ELA and resilience on food addiction in individuals with obesity. Statistical significance was determined at a level of p < 0.05. High levels of ELA showed a strong association between reward control brain signatures and food addiction (p = 0.03). Resilience positively mediated the effect of ELA on food addiction (B = 0.02, p = 0.038). Our findings suggest that food addiction is associated with brain signatures in motivation and reward processing regions indicative of dopaminergic dysregulation and inhibition of cognitive control regions. These mechanistic variabilities along with early life adversity suggest increased vulnerability to develop food addiction and obesity in adulthood, which can buffer by the neuroprotective effects of resilience, highlighting the value of incorporating cognitive appraisal into obesity therapeutic regimens.
Collapse
Affiliation(s)
- Soumya Ravichandran
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
- UC San Diego School of Medicine, University of California, San Diego, USA
| | - Riya Sood
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Isha Das
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Tien Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- Goodman Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Jennifer Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- Goodman Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Nicholas Finger
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Allison Vaughan
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Priten Vora
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Katie Selvaraj
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- Goodman Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA.
- Goodman Luskin Microbiome Center, University of California, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA.
- David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
6
|
Mehta DD, Praecht A, Ward HB, Sanches M, Sorkhou M, Tang VM, Steele VR, Hanlon CA, George TP. A systematic review and meta-analysis of neuromodulation therapies for substance use disorders. Neuropsychopharmacology 2024; 49:649-680. [PMID: 38086901 PMCID: PMC10876556 DOI: 10.1038/s41386-023-01776-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/06/2023] [Accepted: 11/20/2023] [Indexed: 02/21/2024]
Abstract
While pharmacological, behavioral and psychosocial treatments are available for substance use disorders (SUDs), they are not always effective or well-tolerated. Neuromodulation (NM) methods, including repetitive transcranial magnetic stimulation (rTMS), transcranial direct current stimulation (tDCS) and deep brain stimulation (DBS) may address SUDs by targeting addiction neurocircuitry. We evaluated the efficacy of NM to improve behavioral outcomes in SUDs. A systematic literature search was performed on MEDLINE, PsychINFO, and PubMed databases and a list of search terms for four key concepts (SUD, rTMS, tDCS, DBS) was applied. Ninety-four studies were identified that examined the effects of rTMS, tDCS, and DBS on substance use outcomes (e.g., craving, consumption, and relapse) amongst individuals with SUDs including alcohol, tobacco, cannabis, stimulants, and opioids. Meta-analyses were performed for alcohol and tobacco studies using rTMS and tDCS. We found that rTMS reduced substance use and craving, as indicated by medium to large effect sizes (Hedge's g > 0.5). Results were most encouraging when multiple stimulation sessions were applied, and the left dorsolateral prefrontal cortex (DLPFC) was targeted. tDCS also produced medium effect sizes for drug use and craving, though they were highly variable and less robust than rTMS; right anodal DLPFC stimulation appeared to be most efficacious. DBS studies were typically small, uncontrolled studies, but showed promise in reducing misuse of multiple substances. NM may be promising for the treatment of SUDs. Future studies should determine underlying neural mechanisms of NM, and further evaluate extended treatment durations, accelerated administration protocols and long-term outcomes with biochemical verification of substance use.
Collapse
Affiliation(s)
- Dhvani D Mehta
- Addictions Division, CAMH, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Angela Praecht
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Heather B Ward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Maryam Sorkhou
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Victor M Tang
- Addictions Division, CAMH, Toronto, ON, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Vaughn R Steele
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Tony P George
- Addictions Division, CAMH, Toronto, ON, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
7
|
Zammit Dimech D, Ranjan R. A protocol of a systematic review on deep brain stimulation surgery and its efficacy in addressing substance abuse addiction. Health Sci Rep 2023; 6:e1409. [PMID: 37431486 PMCID: PMC10329741 DOI: 10.1002/hsr2.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/12/2023] Open
Abstract
Background Pharmacotherapy and psychotherapeutic approaches are still the mainstay first line of treatment for substance use disorder. However, the path to rehabilitation and cessation of dependence often proves uncertain and laborious, with risks of relapse being considerable despite exposure to current therapeutic modalities. For cases of treatment-refractory addiction, deep brain stimulation (DBS) interventions can prove a more effective long term therapeutic solution for the patient. Objectives The aim of the study will be to systematically assess whether attempts at correcting substance use disorder via DBS neurosurgical interventions have been successful in inducing remission or ameliorating relapse rates. Methods The current study will analyze available literature from database inception up to 15th April 2023, reviewing all publications documenting results achieved with human patients undergoing DBS for substance use disorder in PubMed, Ovid, Cochrane, and Web of Science. The electronic database search will exclude animal studies in the field and focus solely on the application of DBS for the purposes of addressing addiction disorders. Results The expectation is for a reduced number of trial results to have been reported, namely due to the relatively recent application of DBS to address severe addiction. Nonetheless, numbers should be in sufficient amount to inform about the efficacy of the intervention. Conclusion This study will attempt to demonstrate the viability of DBS as a solution for tackling treatment-refractory substance use disorder, proposing it as a valid therapeutic option that can deliver robust results and help combat an expanding societal plague that is drug dependence.
Collapse
Affiliation(s)
- David Zammit Dimech
- Department of Surgical SciencesSurgical Sciences Programme, University of EdinburghEdinburghUK
| | - Redoy Ranjan
- Department of Surgical SciencesSurgical Sciences Programme, University of EdinburghEdinburghUK
- Department of SurgeryFaculty of Surgery, Bangabandhu Sheikh Mujib Medical UniversityDhakaBangladesh
| |
Collapse
|
8
|
Wadsley M, Ihssen N. A Systematic Review of Structural and Functional MRI Studies Investigating Social Networking Site Use. Brain Sci 2023; 13:brainsci13050787. [PMID: 37239257 PMCID: PMC10216498 DOI: 10.3390/brainsci13050787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
An understanding of the neurocognitive profile underlying the use of social networking sites (SNSs) can help inform decisions about the classification of problematic SNS use as an addictive disorder and elucidate how/when 'SNS addiction' might develop. The present review aimed to synthesize structural and functional MRI research investigating problematic/compulsive forms of SNS use or regular (non-addicted) SNS use behaviours. We conducted a systematic search for research articles published in English using the Web of Science, PubMed, and Scopus databases up to October 2022. Studies meeting our inclusion criteria were assessed for quality and a narrative synthesis of the results was conducted. Twenty-eight relevant articles were identified comprising structural MRI (n = 9), resting-state fMRI (n = 6) and task-based fMRI studies (n = 13). Current evidence suggests that problematic SNS use might be characterised by (1) reduced volume of the ventral striatum, amygdala, subgenual anterior cingulate cortex, orbitofrontal cortex and posterior insula; (2) increased ventral striatum and precuneus activity in response to SNS cues; (3) abnormal functional connectivity involving the dorsal attention network; (4) inter-hemispheric communication deficits. Regular SNS use behaviours appear to recruit regions involved in the mentalising network, the self-referential cognition network, the salience network, the reward network and the default mode network. Such findings are at least partially consistent with observations from the substance addiction literature and provide some provisional support for the addictive potential of SNSs. Nonetheless, the present review is limited by the small number of eligible studies and large heterogeneity in the methods employed, and so our conclusions should remain tentative. Moreover, there is a lack of longitudinal evidence suggesting SNSs cause neuroadaptations and thus conclusions that problematic SNS use represents a disease process akin to substance use addictions are premature. More well-powered longitudinal research is needed to establish the neural consequences of excessive and problematic SNS use.
Collapse
Affiliation(s)
- Michael Wadsley
- Department of Psychology, Durham University, Durham DH1 3LE, UK
| | - Niklas Ihssen
- Department of Psychology, Durham University, Durham DH1 3LE, UK
| |
Collapse
|
9
|
Icick R, Shadrin A, Holen B, Karadag N, Lin A, Hindley G, O'Connell K, Frei O, Bahrami S, Høegh MC, Cheng W, Fan CC, Djurovic S, Dale AM, Lagerberg TV, Smeland OB, Andreassen OA. Genetic overlap between mood instability and alcohol-related phenotypes suggests shared biological underpinnings. Neuropsychopharmacology 2022; 47:1883-1891. [PMID: 35953530 PMCID: PMC9485134 DOI: 10.1038/s41386-022-01401-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/20/2022] [Accepted: 07/16/2022] [Indexed: 11/09/2022]
Abstract
Alcohol use disorder (AUD) is a pervasive and devastating mental illness with high comorbidity rates with other mental disorders. Understanding the genetic architecture of this comorbidity could be improved by focusing on intermediate traits that show positive genetic correlation with the disorders. Thus, we aimed to characterize the shared vs. unique polygenicity of AUD, alcohol consumption (AC) and mood instability (MOOD) -beyond genetic correlation, and boost discovery for jointly-associated loci. Summary statistics for MOOD (a binary measure of the tendency to report frequent mood swings), AC (number of standard drinks over a typical consumption week) and AUD GWASs (Ns > 200,000) were analyzed to characterize the cross-phenotype associations between MOOD and AC, MOOD and AUD and AC and AUD. To do so, we used a newly established pipeline that combines (i) the bivariate causal mixture model (MiXeR) to quantify polygenic overlap and (ii) the conjunctional false discovery rate (conjFDR) to discover specific jointly associated genomic loci, which were mapped to genes and biological functions. MOOD was highly polygenic (10.4k single nucleotide polymorphisms, SNPs, SD = 2k) compared to AC (4.9k SNPs, SD = 0.6k) and AUD (4.3k SNPs, SD = 2k). The polygenic overlap of MOOD and AC was twice that of MOOD and AUD (98% vs. 49%), with opposite genetic correlation (-0.2 vs. 0.23), as confirmed in independent samples. MOOD&AUD associated SNPs were significantly enriched for brain genes, conversely to MOOD&AC. Among 38 jointly associated loci, fifteen were novel for MOOD, AC and AUD. MOOD, AC and AUD were also strongly associated at the phenotypic level. Overall, using multilevel polygenic quantification, joint loci discovery and functional annotation methods, we evidenced that the polygenic overlap between MOOD and AC/AUD implicated partly shared biological underpinnings, yet, clearly distinct functional patterns between MOOD&AC and MOOD&AUD, suggesting new mechanisms for the comorbidity of AUD with mood disorders.
Collapse
Affiliation(s)
- Romain Icick
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway.
- Université de Paris Cité, INSERM UMR-S1144, F-75006, Paris, France.
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Børge Holen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Naz Karadag
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Aihua Lin
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Guy Hindley
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Kevin O'Connell
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
- Center for Bioinformatics, Department of Informatics, University of Oslo, PO box 1080, Blindern, 0316, Oslo, Norway
| | - Shahram Bahrami
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Margrethe Collier Høegh
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Weiqiu Cheng
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Chun C Fan
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, 92093, USA
- Multimodal Imaging Laboratory, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
| | - Trine Vik Lagerberg
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Olav B Smeland
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo and Division of Mental Health and Addiction, Oslo University Hospital, 0407, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
10
|
Yuen J, Kouzani AZ, Berk M, Tye SJ, Rusheen AE, Blaha CD, Bennet KE, Lee KH, Shin H, Kim JH, Oh Y. Deep Brain Stimulation for Addictive Disorders-Where Are We Now? Neurotherapeutics 2022; 19:1193-1215. [PMID: 35411483 PMCID: PMC9587163 DOI: 10.1007/s13311-022-01229-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2022] [Indexed: 10/18/2022] Open
Abstract
In the face of a global epidemic of drug addiction, neglecting to develop new effective therapies will perpetuate the staggering human and economic costs of substance use. This review aims to summarize and evaluate the preclinical and clinical studies of deep brain stimulation (DBS) as a novel therapy for refractory addiction, in hopes to engage and inform future research in this promising novel treatment avenue. An electronic database search (MEDLINE, EMBASE, Cochrane library) was performed using keywords and predefined inclusion criteria between 1974 and 6/18/2021 (registered on Open Science Registry). Selected articles were reviewed in full text and key details were summarized and analyzed to understand DBS' therapeutic potential and possible mechanisms of action. The search yielded 25 animal and 22 human studies. Animal studies showed that DBS of targets such as nucleus accumbens (NAc), insula, and subthalamic nucleus reduces drug use and seeking. All human studies were case series/reports (level 4/5 evidence), mostly targeting the NAc with generally positive outcomes. From the limited evidence in the literature, DBS, particularly of the NAc, appears to be a reasonable last resort option for refractory addictive disorders. We propose that future research in objective electrophysiological (e.g., local field potentials) and neurochemical (e.g., extracellular dopamine levels) biomarkers would assist monitoring the progress of treatment and developing a closed-loop DBS system. Preclinical literature also highlighted the prefrontal cortex as a promising DBS target, which should be explored in human research.
Collapse
Affiliation(s)
- Jason Yuen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia
| | - Abbas Z Kouzani
- School of Engineering, Deakin University, Geelong VIC 3216, Australia
| | - Michael Berk
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia
| | - Susannah J Tye
- Queensland Brain Institute, The University of Queensland, St Lucia, QLD, 4072, Australia
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Psychiatry, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychiatry, Emory University, Atlanta, GA, 30322, USA
| | - Aaron E Rusheen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Division of Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jee Hyun Kim
- Deakin University, IMPACT, The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Geelong VIC 3216, Australia.
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, 55905, USA.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
11
|
De Ridder D, Adhia D, Vanneste S. The anatomy of pain and suffering in the brain and its clinical implications. Neurosci Biobehav Rev 2021; 130:125-146. [PMID: 34411559 DOI: 10.1016/j.neubiorev.2021.08.013] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023]
Abstract
Pain is an unpleasant sensory and emotional experience associated with actual or potential tissue damage. Chronic pain, with a prevalence of 20-30 % is the major cause of human suffering worldwide, because effective, specific and safe therapies have yet to be developed. It is unevenly distributed among sexes, with women experiencing more pain and suffering. Chronic pain can be anatomically and phenomenologically dissected into three separable but interacting pathways, a lateral 'painfulness' pathway, a medial 'suffering' pathway and a descending pain inhibitory pathway. One may have pain(fullness) without suffering and suffering without pain(fullness). Pain sensation leads to suffering via a cognitive, emotional and autonomic processing, and is expressed as anger, fear, frustration, anxiety and depression. The medial pathway overlaps with the salience and stress networks, explaining that behavioural relevance or meaning determines the suffering associated with painfulness. Genetic and epigenetic influences trigger chronic neuroinflammatory changes which are involved in transitioning from acute to chronic pain. Based on the concept of the Bayesian brain, pain (and suffering) can be regarded as the consequence of an imbalance between the two ascending and the descending pain inhibitory pathways under control of the reward system. The therapeutic clinical implications of this simple pain model are obvious. After categorizing the working mechanisms of each of the available treatments (pain killers, psychopharmacology, psychotherapy, neuromodulation, psychosurgery, spinal cord stimulation) to 1 or more of the 3 pathways, a rational combination can be proposed of activating the descending pain inhibitory pathway in combination with inhibition of the medial and lateral pathway, so as to rebalance the pain (and suffering) pathways.
Collapse
Affiliation(s)
- Dirk De Ridder
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Divya Adhia
- Section of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Sven Vanneste
- Global Brain Health Institute, Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
12
|
De Ridder D, Maciaczyk J, Vanneste S. The future of neuromodulation: smart neuromodulation. Expert Rev Med Devices 2021; 18:307-317. [PMID: 33764840 DOI: 10.1080/17434440.2021.1909470] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: The International Neuromodulation Society defines neuromodulation as the alteration of nerve activity through targeted delivery of a stimulus, such as electrical stimulation or chemical agents, to specific neurological sites in the body.Areas covered: In the near future (<5 years) increasingly complex implantable neuromodulation systems will enter the market. These devices are capable of closed-loop stimulation and the delivery of novel stimulation designs, pushing the need for upgradability. But what about the near-to-far future, meaning 5-10 years from now?Expert opinion: We propose that neuromodulation in the near to far future (5-10 years) will involve integration of adaptive network neuromodulation with predictive artificial intelligence, automatically adjusted by brain and external sensors, and controlled via cloud-based applications. The components will be introduced in a phased approach, culminating in a fully autonomous brain-stimulator-cloud interface. This may, in the long future (>10 years), lead to the brain of the future, a brain with integrated artificial intelligence.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Jarek Maciaczyk
- Stereotactic and Functional Neurosurgery, Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Sven Vanneste
- Lab for Clinical & Integrative Neuroscience, Trinity College Institute for Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
13
|
Abstract
The pathophysiological mechanisms that underlie the generation and maintenance of tinnitus are being unraveled progressively. Based on this knowledge, a large variety of different neuromodulatory interventions have been developed and are still being designed, adapting to the progressive mechanistic insights in the pathophysiology of tinnitus. rTMS targeting the temporal, temporoparietal, and the frontal cortex has been the mainstay of non-invasive neuromodulation. Yet, the evidence is still unclear, and therefore systematic meta-analyses are needed for drawing conclusions on the effectiveness of rTMS in chronic tinnitus. Different forms of transcranial electrical stimulation (tDCS, tACS, tRNS), applied over the frontal and temporal cortex, have been investigated in tinnitus patients, also without robust evidence for universal efficacy. Cortex and deep brain stimulation with implanted electrodes have shown benefit, yet there is insufficient data to support their routine clinical use. Recently, bimodal stimulation approaches have revealed promising results and it appears that targeting different sensory modalities in temporally combined manners may be more promising than single target approaches.While most neuromodulatory approaches seem promising, further research is required to help translating the scientific outcomes into routine clinical practice.
Collapse
|