1
|
Wang Y, Wang Q, Sui X, Guo M, Li L, Jia W, Tian Y, Lu Q, Wang B. Catalpalactone protects rats nerve function from hypoxic lesion by polarizing microglial cells toward M2 phenotype. Eur J Med Res 2025; 30:96. [PMID: 39940010 PMCID: PMC11823218 DOI: 10.1186/s40001-025-02321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/22/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Ischemic brain injury results in high disability due to neuroinflammation and oxidative stress, and M1/M2 polarization of glial cells plays a key role in neuroinflammation. This research explored the protective effect of Catalpalactone on middle cerebral artery occlusion (MCAO)-induced brain injury and its underlying regulation mechanism in rats. METHODS The ischemic lesions were induced by the MCAO, and the oxygen and glucose deprivation/reoxygenation (OGD/R) was used for BV2 microglial cell induction. The polarization of glial cells was determined via immunohistochemistry staining assessment. Oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) assays were used for the glycolysis and oxidative phosphorylation test. After that, the cell counting kit-8 (CCK-8) for cell viability test and flow cytometry for apoptosis and phosphorylation analysis were performed. Furthermore, a co-culture model of BV2 and PC12 cells was used for the purpose of exploring the effects of Catalpalactone on the interaction and of microglia and neurons in ischemic brain injury. Finally, the Modified Neurological Severity Score (mNSS) analysis was used for the analysis on the neurological function. RESULTS After MCAO induction, the infiltration of microglial cells were significantly increased in the injury area, and its M1 phenotype was enhanced (up-regulated Cd86). In vitro, the OGD/R-induced BV2 microglial cell also exhibited the increasing M1 phenotype with higher glycolysis activity, but lower oxidative phosphorylation through the activating JAK-SATA signaling pathway. Finally, we determined that 15 μM Catalpalactone optimally induces M2 microglial polarization with increased cell viability and decreased apoptosis in the OGD/R-induced BV2 cell model, while also reducing mNSS scores and improving neurological function in the MCAO rat model. CONCLUSION We clarified the underlying mechanism of Catalpalactone treatment for ischemic lesions through promoting M2 microglial cells phenotype.
Collapse
Affiliation(s)
- Yu Wang
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China.
| | - Qi Wang
- Department of Immunology, College of Medical Technology, Qiqihar Medical University, Qiqihar, 161006, China
| | - Xin Sui
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| | - Mingxing Guo
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| | - Li Li
- Basic Medical Department, Qiqihar Medical University, Qiqihar, 161006, China
| | - Weiwei Jia
- Research Laboratory of Basic Medical School, Qiqihar Medical University, Qiqihar, 161006, China
| | - Yinan Tian
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| | - Qi Lu
- Department of Neurology Ward 2, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| | - Bo Wang
- Department of Neurology Ward 3, The Third Affiliated Hospital, Qiqihar Medical University, Qiqihar, 161000, China
| |
Collapse
|
2
|
Chen K, Wu X, Li X, Pan H, Zhang W, Shang J, Di Y, Liu R, Zheng Z, Hou X. Antimicrobial Neuropeptides and Their Receptors: Immunoregulator and Therapeutic Targets for Immune Disorders. Molecules 2025; 30:568. [PMID: 39942672 PMCID: PMC11820534 DOI: 10.3390/molecules30030568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025] Open
Abstract
The interaction between the neuroendocrine system and the immune system plays a key role in the onset and progression of various diseases. Neuropeptides, recognized as common biochemical mediators of communication between these systems, are receiving increasing attention because of their potential therapeutic applications in immune-related disorders. Additionally, many neuropeptides share significant similarities with antimicrobial peptides (AMPs), and evidence shows that these antimicrobial neuropeptides are directly involved in innate immunity. This review examines 10 antimicrobial neuropeptides, including pituitary adenylate cyclase-activating polypeptide (PACAP), vasoactive intestinal peptide (VIP), α-melanocyte stimulating hormone (α-MSH), ghrelin, adrenomedullin (AM), neuropeptide Y (NPY), urocortin II (UCN II), calcitonin gene-related peptide (CGRP), substance P (SP), and catestatin (CST). Their expression characteristics and the immunomodulatory mechanisms mediated by their specific receptors are summarized, along with potential drugs targeting these receptors. Future studies should focus on further investigating antimicrobial neuropeptides and advancing the development of related drugs in preclinical and/or clinical studies to improve the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Kaiqi Chen
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Xiaojun Wu
- College of Medical Engineering, Jining Medical University, Jining 272067, China; (X.W.); (R.L.)
| | - Xiaoke Li
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Haoxuan Pan
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Wenhui Zhang
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Jinxi Shang
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Yinuo Di
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Ruonan Liu
- College of Medical Engineering, Jining Medical University, Jining 272067, China; (X.W.); (R.L.)
| | - Zhaodi Zheng
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| | - Xitan Hou
- College of Medical Imaging and Laboratory, Jining Medical University, Jining 272067, China; (K.C.); (X.L.); (H.P.); (W.Z.); (J.S.); (Y.D.)
| |
Collapse
|
3
|
Deng X, Ren J, Chen K, Zhang J, Zhang Q, Zeng J, Li T, Tang Q, Lin J, Zhu J. Mas receptor activation facilitates innate hematoma resolution and neurological recovery after hemorrhagic stroke in mice. J Neuroinflammation 2024; 21:106. [PMID: 38658922 PMCID: PMC11041011 DOI: 10.1186/s12974-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) is a devastating neurological disease causing severe sensorimotor dysfunction and cognitive decline, yet there is no effective treatment strategy to alleviate outcomes of these patients. The Mas axis-mediated neuroprotection is involved in the pathology of various neurological diseases, however, the role of the Mas receptor in the setting of ICH remains to be elucidated. METHODS C57BL/6 mice were used to establish the ICH model by injection of collagenase into mice striatum. The Mas receptor agonist AVE0991 was administered intranasally (0.9 mg/kg) after ICH. Using a combination of behavioral tests, Western blots, immunofluorescence staining, hematoma volume, brain edema, quantitative-PCR, TUNEL staining, Fluoro-Jade C staining, Nissl staining, and pharmacological methods, we examined the impact of intranasal application of AVE0991 on hematoma absorption and neurological outcomes following ICH and investigated the underlying mechanism. RESULTS Mas receptor was found to be significantly expressed in activated microglia/macrophages, and the peak expression of Mas receptor in microglia/macrophages was observed at approximately 3-5 days, followed by a subsequent decline. Activation of Mas by AVE0991 post-treatment promoted hematoma absorption, reduced brain edema, and improved both short- and long-term neurological functions in ICH mice. Moreover, AVE0991 treatment effectively attenuated neuronal apoptosis, inhibited neutrophil infiltration, and reduced the release of inflammatory cytokines in perihematomal areas after ICH. Mechanistically, AVE0991 post-treatment significantly promoted the transformation of microglia/macrophages towards an anti-inflammatory, phagocytic, and reparative phenotype, and this functional phenotypic transition of microglia/macrophages by Mas activation was abolished by both Mas inhibitor A779 and Nrf2 inhibitor ML385. Furthermore, hematoma clearance and neuroprotective effects of AVE0991 treatment were reversed after microglia depletion in ICH. CONCLUSIONS Mas activation can promote hematoma absorption, ameliorate neurological deficits, alleviate neuron apoptosis, reduced neuroinflammation, and regulate the function and phenotype of microglia/macrophages via Akt/Nrf2 signaling pathway after ICH. Thus, intranasal application of Mas agonist ACE0991 may provide promising strategy for clinical treatment of ICH patients.
Collapse
Affiliation(s)
- Xiangyang Deng
- Department of Neurosurgery, Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuan Road, Wenzhou, 325027, Zhejiang, China
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Junwei Ren
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Kezhu Chen
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jin Zhang
- The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Quan Zhang
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jun Zeng
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Tianwen Li
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China
| | - Jian Lin
- Department of Neurosurgery, Wenzhou Municipal Key Laboratory of Neurodevelopmental Pathology and Physiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109, Xueyuan Road, Wenzhou, 325027, Zhejiang, China.
| | - Jianhong Zhu
- Department of Neurosurgery, Huashan Hospital, National Center for Neurological Disorders, National Key Lab. for Medical Neurobiology, Institutes of Brain Science, Shanghai Key Lab. of Brain Function and Regeneration, Institute of Neurosurgery, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Rd, Shanghai, 200040, China.
| |
Collapse
|
4
|
Li T, Yue Y, Ma Y, Zhong Z, Guo M, Zhang J, Wang Z, Miao C. Fasting-mimicking diet alleviates inflammatory pain by inhibiting neutrophil extracellular traps formation and neuroinflammation in the spinal cord. Cell Commun Signal 2023; 21:250. [PMID: 37735678 PMCID: PMC10512659 DOI: 10.1186/s12964-023-01258-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/06/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Neutrophil extracellular traps (NETs) promote neuroinflammation and, thus, central nervous system (CNS) disease progression. However, it remains unclear whether CNS-associated NETs affect pain outcomes. A fasting-mimicking diet (FMD) alleviates neurological disorders by attenuating neuroinflammation and promoting nerve regeneration. Hence, in this study, we explore the role of NETs in the CNS during acute pain and investigate the role of FMD in inhibiting NETs and relieving pain. METHODS The inflammatory pain model was established by injecting complete Freund's adjuvant (CFA) into the hind paw of mice. The FMD diet regimen was performed during the perioperative period. PAD4 siRNA or CI-amidine (PAD4 inhibitor) was used to inhibit the formation of NETs. Monoamine oxidase-B (MAO-B) knockdown occurred by AAV-GFAP-shRNA or AAV-hSyn-shRNA or was inhibited by selegiline (an MAO-B inhibitor). The changes in NETs, neuroinflammation, and related signaling pathways were examined by western blot, immunofluorescence, ELISA, and flow cytometry. RESULTS In the acute phase of inflammatory pain, NETs accumulate in the spinal cords of mice. This is associated with exacerbated neuroinflammation. Meanwhile, inhibition of NETs formation alleviates allodynia and neuroinflammation in CFA mice. FMD inhibits NETs production and alleviates inflammatory pain, which is enhanced by treatment with the NETs inhibitor CI-amidine, and reversed by treatment with the NETs inducer phorbol 12-myristate 13-acetate (PMA). Mechanistically, the neutrophil-recruiting pathway MAO-B/5-hydroxyindoleacetic acid (5-HIAA) / G-protein-coupled receptor 35 (GPR35) and NETs-inducing pathway MAO-B/ Reactive oxygen species (ROS) are significantly upregulated during the development of inflammatory pain. MAO-B is largely expressed in astrocytes and neurons in the spinal cords of CFA mice. However, knockdown or inhibition of MAO-B effectively attenuates CFA-induced inflammatory pain, NETs formation, and neuroinflammation in the spinal cord. Moreover, within rescue experiments, MAO-B inhibitors synergistically enhance FMD-induced pain relief, NETs inhibition, and neuroinflammation attenuation, whereas supplementation with MAO-B downstream molecules (i.e., 5-HIAA and PMA) abolished this effect. CONCLUSIONS Neutrophil-released NETs in the spinal cord contribute to pain development. FMD inhibits NETs formation and NETs-induced neuroinflammation by inhibiting the MAO-B/5-HIAA/GPR35 and MAO-B/ROS pathways in astrocytes and neurons, thereby relieving pain progression. Video Abstract.
Collapse
Affiliation(s)
- Ting Li
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ying Yue
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Yan Ma
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Ziwen Zhong
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Miaomiao Guo
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Jie Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| | - Zhiping Wang
- Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
- Shanghai Key Laboratory of Perioperative Stress and Protection, Shanghai, China
| |
Collapse
|
5
|
Xu X, Li H, Lu S, Shen Y. Roles of syntaphilin and armadillo repeat-containing X-linked protein 1 in brain injury after experimental intracerebral hemorrhage. Neurosci Lett 2023; 809:137300. [PMID: 37187340 DOI: 10.1016/j.neulet.2023.137300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/15/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Studies have indicated that neuronal mitochondrial injury may be involved in the brain injury caused by intracerebral hemorrhage (ICH). Syntaphilin (SNPH) is associated with mitochondrial anchoring and Armadillo repeat-containing X-linked protein 1 (Armcx1) is linked to mitochondrial transport. This study aimed to analyze the contribution of SNPH and Armcx1 to the neuronal damage resulting from ICH. Primary cultured neuron cells were exposed to oxygenated hemoglobin to replicate the effects of ICH stimulation, while a mouse model of ICH was established by injecting autoblood into the basal ganglia. Specific SNPH knockout or Armcx1 overexpression in neurons is achieved by stereolocalization injection of adeno-associated virus vectors carrying hsyn specific promoters. First, it was confirmed that there is a correlation between SNPH/Armcx1 and ICH pathology, as evidenced by the rise of SNPH and the decrease of Armcx1 in neurons exposed to ICH both in vitro and in vivo. Second, our research revealed the protective effects of SNPH knockdown and Armcx1 overexpression on brain cell death around the hematoma in mice. In addition, the efficacy of SNPH knockdown and Armcx1 overexpression in improving neurobehavioral deficits was also demonstrated in mouse ICH model. Thus, moderate adjusting the levels of SNPH and Armcx1 may be an effective way to improve the outcome of ICH.
Collapse
Affiliation(s)
- Xiaowen Xu
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou 215100, Jiangsu Province, China
| | - Shiqi Lu
- Department of Intensive Care Unit, The First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu Province, China.
| | - Yi Shen
- Department of Intensive Care Unit, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215002, Jiangsu Province, China.
| |
Collapse
|
6
|
Wen H, Tan J, Tian M, Wang Y, Gao Y, Gong Y. TGF-β1 ameliorates BBB injury and improves long-term outcomes in mice after ICH. Biochem Biophys Res Commun 2023; 654:136-144. [PMID: 36931108 DOI: 10.1016/j.bbrc.2023.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is a devastating subtype of stroke characterized by high mortality and morbidity rates with no effective treatment. TGF-β/ALK-5 signaling is reported to participated in the regulation of blood-brain barrier (BBB) integrity in the inflammation pain model, the effects of transforming growth factor (TGF)-β1 and the potential mechanisms on BBB after ICH have not been fully elucidated. Herein, we have demonstrated that peripheral administration of TGF-β1 reduces brain edema and ameliorated BBB injury after ICH. Consistent with previous results, TGF-β1 is shown to promote activation of anti-inflammatory microglia and reduce the inflammatory response after ICH. Furthermore, TGF-β1 administration improves long-term outcomes after ICH. Our data suggest that TGF-β1 may be a promising therapeutic agent for ICH.
Collapse
Affiliation(s)
- Huimei Wen
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jiaying Tan
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Mi Tian
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yao Wang
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yanqin Gao
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| | - Ye Gong
- Department of Critical Care Medicine and Neurosurgery of Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Liu X, Li M, Han Q, Zuo Z, Wang Q, Su D, Fan M, Chen T. Exploring a shared genetic signature and immune infiltration between spontaneous intracerebral hemorrhage and Helicobacter pylori infection. Microb Pathog 2023; 178:106067. [PMID: 36914055 DOI: 10.1016/j.micpath.2023.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
BACKGROUND Spontaneous intracerebral hemorrhage (ICH) is a devastating form of stroke with high morbidity, disability and mortality. Helicobacter pylori is a major pathogen responsible for chronic gastritis, leading to gastric ulcers and ultimately gastric cancer. Although it remains controversial whether H. pylori infection causes peptic ulcers under various traumatic stimuli, some related studies suggest that H. pylori infection may be an important factor in delaying peptic ulcer healing. However, the linking mechanism between ICH and H. pylori infection remain unclear. The purpose of this study was to examine the genetic features and pathways shared in ICH and H. pylori infection, and compare immune infiltration. METHODS We used microarray data for ICH and H. pylori infection from the Gene Expression Omnibus (GEO) database. Differential gene expression analysis was performed on both datasets using the R software and the limma package to find the common differentially expressed genes (DEGs). In addition, we performed functional enrichment analysis on DEGs, determined protein-protein interactions (PPIs), identified Hub genes using the STRING database and Cytoscape software, and constructed microRNA-messenger RNA (miRNA-mRNA) interaction networks. Additionally, immune infiltration analysis was performed with the R software and related R packages. RESULTS A total of 72 DEGs were identified between ICH and H. pylori infection, including 68 upregulated genes and 4 downregulated genes. Functional enrichment analysis revealed that multiple signaling pathways are closely linked to both diseases. In addition, the cytoHubba plugin identified 15 important hub genes, namely PLEK, NCF2, CXCR4, CXCL1, FGR, CXCL12, CXCL2, CD69, NOD2, RGS1, SLA, LCP1, HMOX1, EDN1, and ITGB3.Also, the correlation analysis of immune cell fractions revealed a limited link between their immune-related common genes and immune cells. CONCLUSION Through bioinformatics methods, this study revealed that there are common pathways and hub genes between ICH and H. pylori infection. Thus, H. pylori infection may have common pathogenic mechanisms with the development of peptic ulcer after ICH. This study provided new ideas for early diagnosis and prevention of ICH and H. pylori infection.
Collapse
Affiliation(s)
- Xiaozhuo Liu
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Mei Li
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Qian Han
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Zhengyao Zuo
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Qing Wang
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Dongpo Su
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Mingming Fan
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China
| | - Tong Chen
- North China University of Science and Technology Affiliated Hospital, Tangshan, 063000, Hebei Province, China.
| |
Collapse
|
8
|
Jin P, Qi D, Cui Y, Lenahan C, Zhang JH, Tao X, Deng S, Tang J. Aprepitant attenuates NLRC4-dependent neuronal pyroptosis via NK1R/PKCδ pathway in a mouse model of intracerebral hemorrhage. J Neuroinflammation 2022; 19:198. [PMID: 35922848 PMCID: PMC9351153 DOI: 10.1186/s12974-022-02558-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pyroptosis is a programmed cell death mediated by inflammasomes. Previous studies have reported that inhibition of neurokinin receptor 1 (NK1R) exerted neuroprotection in several neurological diseases. Herein, we have investigated the role of NK1R receptor inhibition using Aprepitant to attenuate NLRC4-dependent neuronal pyroptosis after intracerebral hemorrhage (ICH), as well as the underlying mechanism. METHODS A total of 182 CD-1 mice were used. ICH was induced by injection of autologous blood into the right basal ganglia. Aprepitant, a selective antagonist of NK1R, was injected intraperitoneally at 1 h after ICH. To explore the underlying mechanism, NK1R agonist, GR73632, and protein kinase C delta (PKCδ) agonist, phorbol 12-myristate 13-acetate (PMA), were injected intracerebroventricularly at 1 h after ICH induction, and small interfering ribonucleic acid (siRNA) for NLRC4 was administered via intracerebroventricular injection at 48 h before ICH induction, respectively. Neurobehavioral tests, western blot, and immunofluorescence staining were performed. RESULTS The expression of endogenous NK1R and NLRC 4 were gradually increased after ICH. NK1R was expressed on neurons. Aprepitant significantly improved the short- and long-term neurobehavioral deficits after ICH, which was accompanied with decreased neuronal pyroptosis, as well as decreased expression of NLRC4, Cleaved-caspase-1, GSDMD (gasdermin D), IL-1β, and IL-18. Activation of NK1R or PKCδ abolished these neuroprotective effects of Aprepitant after ICH. Similarly, knocking down NLRC4 using siRNA produced similar neuroprotective effects. CONCLUSION Aprepitant suppressed NLRC4-dependent neuronal pyroptosis and improved neurological function, possibly mediated by inhibition of NK1R/PKCδ signaling pathways after ICH. The NK1R may be a promising therapeutic target for the treatment of ICH.
Collapse
Affiliation(s)
- Peng Jin
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.,Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA
| | - Dongqing Qi
- Department of Rehabilitation Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Yuhui Cui
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200040, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, 88001, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, 92350, USA.,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, 92350, USA
| | - Xiaogen Tao
- Department of Intensive Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Shuixiang Deng
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA. .,Department of Intensive Care Unit, Huashan Hospital, Fudan University, 12 Urumqi Road, Shanghai, 200040, China.
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, Risley Hall, Room 219, 11041 Campus Street, Loma Linda, CA, 92354, USA.
| |
Collapse
|
9
|
Duan C, Wang H, Jiao D, Geng Y, Wu Q, Yan H, Li C. Curcumin Restrains Oxidative Stress of After Intracerebral Hemorrhage in Rat by Activating the Nrf2/HO-1 Pathway. Front Pharmacol 2022; 13:889226. [PMID: 35571134 PMCID: PMC9092178 DOI: 10.3389/fphar.2022.889226] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Intracerebral hemorrhage (ICH), a severe hemorrhagic stroke, induces cerebral oxidative stress and severe secondary neurological injury. Curcumin was demonstrated to inhibit oxidative stress in the brain after ICH. However, the pharmacological mechanism needs further research. We used an intrastriatal injection of autologous blood to make the rat ICH model, and then the rat was treated with curcumin (100 mg/kg/day). Modified Neurological Severity Score (mNSS) and corner test results showed that curcumin could significantly promote the neurological recovery of ICH rats. Meanwhile, curcumin could substantially reduce ROS and MDA in the tissues around intracranial hematoma and prevent GSH depletion. To explore the pharmacological molecular mechanism of curcumin, we used HAPI cells and primary rat cortical microglia for in vitro experiments. In vitro, heme-treated cells were used as the cell model of ICH to explore the molecular mechanism of inhibiting oxidative stress by curcumin treatment. The results showed that curcumin significantly inhibited heme-induced oxidative stress, decreased intracellular ROS and MDA, and promoted Nrf2 and its downstream antioxidant gene (HO-1, NQO1, and Gpx4) expression. These results suggest that curcumin inhibits oxidative stress by activating the Nrf2/HO-1 pathway. Here, our results indicate that curcumin can promote the inhibition of oxidative stress in microglia by activating the Nrf2/HO-1 pathway and promoting neurological recovery after ICH, providing a new therapeutic target for clinical treatment of ICH.
Collapse
Affiliation(s)
- Chenyang Duan
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| | - Hanbin Wang
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| | - Dian Jiao
- Tianjin University, Tianjin, China.,Tianjin Huanhu Hospital, Tianjin University, Tianjin, China
| | - Yanqin Geng
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China.,School of Medicine, Nankai University, Tianjin, China
| | - Qiaoli Wu
- Tianjin Huanhu Hospital, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Hua Yan
- Tianjin Huanhu Hospital, Tianjin University, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Neurosurgical Institute, Tianjin Huanhu Hospital, Tianjin, China
| | - Chunhui Li
- Affiliated Hospital of Hebei University, Baoding, China.,Hebei University, Baoding, China
| |
Collapse
|
10
|
Activation of LRP6 with HLY78 Attenuates Oxidative Stress and Neuronal Apoptosis via GSK3β/Sirt1/PGC-1α Pathway after ICH. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7542468. [PMID: 35419167 PMCID: PMC9001077 DOI: 10.1155/2022/7542468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 12/14/2022]
Abstract
Background Oxidative stress and neuronal apoptosis have important roles in the pathogenesis after intracerebral hemorrhage (ICH). Previous studies have reported that low-density lipoprotein receptor-related protein 6 (LRP6) exerts neuroprotection in several neurological diseases. Herein, we investigate the role of LRP6 receptor activation with HLY78 to attenuate oxidative stress and neuronal apoptosis after ICH, as well as the underlying mechanism. Methods A total of 199 CD1 mice were used. ICH was induced via injection of autologous blood into the right basal ganglia. HLY78 was administered via intranasal injection at 1 h after ICH. To explore the underlying mechanism, LRP6 siRNA and selisistat, a Sirt1 selective antagonist, were injected intracerebroventricularly at 48 h before ICH induction. Neurobehavioral tests, Western blot, and immunofluorescence staining were performed. Results The expression of endogenous p-LRP6 was gradually increased and expressed on neurons after ICH. HLY78 significantly improved the short- and long-term neurobehavioral deficits after ICH, which was accompanied with decreased oxidative stress and neuronal apoptosis, as well as increased expression of p-GSK3β, Sirt1, and PGC-1α, as well as downregulation of Romo-1 and C-Caspase-3. LRP6 knockdown or Sirt1 inhibition abolished these effects of HLY78 after ICH. Conclusion Our results suggest that administration of HLY78 attenuated oxidative stress, neuronal apoptosis, and neurobehavioral impairments through the LRP6/GSK3β/Sirt1/PGC-1α signaling pathway after ICH.
Collapse
|
11
|
Correcting a widespread error: Neuroprotectant N-acetyl-L-tryptophan does not bind to the neurokinin-1 receptor. Mol Cell Neurosci 2022; 120:103728. [PMID: 35421568 DOI: 10.1016/j.mcn.2022.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
|
12
|
Application Effect of Whole-Process Seamless Nursing Model Based on Smart Healthcare Mode in Perioperative Period of Patients Undergoing Hematoma Removal. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:1323678. [PMID: 35251559 PMCID: PMC8890834 DOI: 10.1155/2022/1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/17/2022] [Accepted: 01/26/2022] [Indexed: 11/21/2022]
Abstract
Objective To explore the application effect of a whole-process seamless nursing model based on the smart healthcare mode in the perioperative period of patients undergoing hematoma removal. Methods In this retrospective study, 50 patients with hematoma removal admitted to our hospital from August 2018 to August 2019 were included as the control group (CG), while 50 patients with hematoma removal admitted to our hospital from September 2019 to September 2020 were included as the experimental group (EG). During the period of hematoma removal, CG received routine perioperative nursing, while EG received the whole-process seamless nursing model based on the smart healthcare mode. The perioperative indexes, hemodynamic indexes, and the incidence of postoperative complications were compared between the two groups, and the incidence of nursing staff's work omissions in different periods was analyzed. Results Notable differences were observed in surgical time, intraoperative blood loss, hematoma clearance rates, length of ICU stay, hospitalization time, removal time of ventricular drainage tube, and cerebral edema volume at 1 week after surgery between EG and CG (P < 0.05). Compared with CG, EG achieved obviously better hemodynamic indexes (P < 0.001) and a lower incidence of bedsore, muscle atrophy, and eating/swallowing disorders (P < 0.05). During the implementation of smart healthcare, the incidence of nursing staff's work omissions was remarkably reduced (P < 0.05). Conclusion Under the smart healthcare, the incidence of nursing staff's work omissions is lower, and the effect of the whole-process seamless nursing is better, which can optimize the perioperative indexes of patients, stabilize the postoperative hemodynamics, and reduce the incidence of complications. Therefore, the whole-process seamless nursing model based on the smart healthcare mode has promotion value in clinic.
Collapse
|
13
|
Yang Y, Zhou W, Xu X, Ge X, Wang F, Zhang GQ, Miao L, Deng X. Aprepitant Inhibits JNK and p38/MAPK to Attenuate Inflammation and Suppresses Inflammatory Pain. Front Pharmacol 2022; 12:811584. [PMID: 35087409 PMCID: PMC8786910 DOI: 10.3389/fphar.2021.811584] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/21/2021] [Indexed: 12/21/2022] Open
Abstract
Substance P contributes to the pathogenesis of pain by acting on NK-1R, specialized sensory neurons that detect noxious stimuli. Aprepitant, an antagonist of NK-1R, is widely used to treat chemotherapy-induced nausea and vomiting. In this study, we used LPS-stimulated BV-2 microglia cell line and animal models of inflammatory pain to explore the analgesic effect of aprepitant on inflammatory pain and its underlying mechanism. The excitability of DRG neurons were measured using whole-cell patch-clamp recordings. The behavioral tests were measured and the morphological changes on inflamed paw sections were determined by HE staining. Changes in the expressions of cytokine were measured by using real-time quantitative PCR analysis and ELISA method. Immunofluorescence and western blotting were used to detect the microglia activation and MAPK. Aprepitant treatment significantly inhibited the excitability of DRG neurons. The pain behavior and the paw tissues inflammatory damage were significantly relived after the administration of aprepitant compared to formalin group. Aprepitant significantly suppressed the activation of microglia, phosphorylation of JNK and p38 MAPK, as well as the mRNA and protein expressions of MCP-1, TNF-α, IL-6, and IL-1β, in vivo and in vitro. The LPS-induced over-translocation into nucleus of NF-κBp65 was down-regulated following aprepitant treatment in BV-2 cells. The present study suggests that aprepitant attenuates inflammatory pain in mice via suppressing the phosphorylation of JNK and p38, and inhibiting the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yang Yang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuqi Xu
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xianxiu Ge
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Guang-Qin Zhang
- Department of Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lin Miao
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Xueting Deng
- Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|