1
|
Kallunki P, Sotty F, Willén K, Lubas M, David L, Ambjørn M, Bergström AL, Buur L, Malik I, Nyegaard S, Eriksen TT, Krogh BO, Stavenhagen JB, Andersen KJ, Pedersen LØ, Cholak E, van den Brink EN, Rademaker R, Vink T, Satijn D, Parren PWHI, Christensen S, Olsen LR, Søderberg JN, Vergo S, Jensen A, Egebjerg J, Wulff-Larsen PG, Harndahl MN, Damlund DSM, Bjerregaard-Andersen K, Fog K. Rational selection of the monoclonal α-synuclein antibody amlenetug (Lu AF82422) for the treatment of α-synucleinopathies. NPJ Parkinsons Dis 2025; 11:132. [PMID: 40404755 PMCID: PMC12098740 DOI: 10.1038/s41531-024-00849-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 11/28/2024] [Indexed: 05/24/2025] Open
Abstract
Amlenetug (Lu AF82422) is a human monoclonal antibody targeting α-synuclein in clinical development for multiple system atrophy. We describe a series of studies that characterize its functional properties and supported its selection as a viable clinical candidate. Amlenetug inhibits seeding induced in mouse primary neurons by various α-synuclein fibrillar assemblies and by aggregates isolated from MSA brain homogenate. In vivo, both co-injection of amlenetug with α-synuclein assemblies in mouse brain and peripheral administration inhibit α-synuclein seeding. Amlenetug inhibits uptake of α-synuclein seeds as well as accumulation of C-terminal truncated α-synuclein seeds and demonstrates binding to monomeric, aggregated, and truncated forms of human α-synuclein. The epitope of amlenetug was mapped to amino acids 112-117 and further characterized by crystallographic structure analysis. Based on our data, we hypothesize that targeting α-synuclein will potentially slow further disease progression by inhibiting further pathology development but be without impact on established pathology and symptoms.
Collapse
Affiliation(s)
- Pekka Kallunki
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark.
| | - Florence Sotty
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Katarina Willén
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Michal Lubas
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Laurent David
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Malene Ambjørn
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | - Louise Buur
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Ibrahim Malik
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | | | - Berit O Krogh
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | | | - Lars Ø Pedersen
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Ersoy Cholak
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | - Rik Rademaker
- Genmab, Uppsalalaan 15, 3584 CT, Utrecht, The Netherlands
| | - Tom Vink
- Genmab, Uppsalalaan 15, 3584 CT, Utrecht, The Netherlands
| | - David Satijn
- Genmab, Uppsalalaan 15, 3584 CT, Utrecht, The Netherlands
| | | | | | - Line R Olsen
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | - Sandra Vergo
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Allan Jensen
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | - Jan Egebjerg
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| | | | | | | | | | - Karina Fog
- H. Lundbeck A/S, Research, Ottiliavej 9, 2500, Valby, Denmark
| |
Collapse
|
2
|
Uemura N. Fibril-seeded animal models of synucleinopathies: Pathological mechanisms, disease modeling, and therapeutic implications. Neurosci Res 2025:S0168-0102(25)00082-3. [PMID: 40316176 DOI: 10.1016/j.neures.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/04/2025]
Abstract
Accumulating evidence suggests that prion-like spread of misfolded α-Synuclein (αSyn) underlies the pathological progression of Lewy body diseases (LBD). Animal models injected with αSyn preformed fibrils (PFFs) have provided strong evidence for the prion hypothesis in LBD. Moreover, αSyn PFFs can be administered to various hosts and regions, contributing to the elucidation of pathological mechanisms and disease modeling. These models have also been used to identify biomarkers and develop new disease-modifying therapies for LBD. In contrast, it remains unknown how the prion-like properties of αSyn contribute to the pathogenesis of multiple system atrophy (MSA). Recent studies indicate that conformationally distinct αSyn fibrils induce different pathological features in animals, supporting the strain hypothesis, which suggests that conformational variations in αSyn fibrils contribute to the clinicopathological heterogeneity in synucleinopathies. However, the study of disease-specific αSyn fibrils in pathological mechanisms and disease modeling is still in its early stages. This review aims to highlight recent advances in αSyn fibril-seeded animal models with an emphasis on their unique features and utility in exploring pathological mechanisms and identifying novel disease-modifying therapies. In addition, I discuss future directions for refining these models in light of the emerging strain hypothesis in synucleinopathies.
Collapse
Affiliation(s)
- Norihito Uemura
- Department of Neurological Disease Control, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan; Department of Therapeutics for Multiple System Atrophy, Kyoto University Graduate School of Medicine, 54 Shogoin-Kawaharacho, Sakyoku, Kyoto 606-8507, Japan.
| |
Collapse
|
3
|
Boschen SL, A Mukerjee A, H Faroqi A, E Rabichow B, Fryer J. Research models to study lewy body dementia. Mol Neurodegener 2025; 20:46. [PMID: 40269912 PMCID: PMC12020038 DOI: 10.1186/s13024-025-00837-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Lewy body dementia (LBD) encompasses neurodegenerative dementias characterized by cognitive fluctuations, visual hallucinations, and parkinsonism. Clinical differentiation of LBD from Alzheimer's disease (AD) remains complex due to symptom overlap, yet approximately 25% of dementia cases are diagnosed as LBD postmortem, primarily identified by the presence of α-synuclein aggregates, tau tangles, and amyloid plaques. These pathological features position LBD as a comorbid condition of both Parkinson's disease (PD) and AD, with over 50% of LBD cases exhibiting co-pathologies. LBD's mixed pathology complicates the development of comprehensive models that reflect the full spectrum of LBD's etiological, clinical, and pathological features. While existing animal and cellular models have facilitated significant discoveries in PD and AD research, they lack specificity in capturing LBD's unique pathogenic mechanisms, limiting the exploration of therapeutic avenues for LBD specifically. This review assesses widely used PD and AD models in terms of their relevance to LBD, particularly focusing on their ability to replicate human disease pathology and assess treatment efficacy. Furthermore, we discuss potential modifications to these models to advance the understanding of LBD mechanisms and propose innovative research directions aimed at developing models with enhanced etiological, face, predictive, and construct validity.
Collapse
Affiliation(s)
- Suelen Lucio Boschen
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
- Department of Neurosurgery, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA.
| | - Aarushi A Mukerjee
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Ayman H Faroqi
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - Ben E Rabichow
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, 200 First St. SW, Rochester, MN, 55905, USA
| | - John Fryer
- Translational Genomics Research Institute, 445 N 5th St, Phoenix, AZ, 850054, USA
| |
Collapse
|
4
|
Guimarães RP, de Resende MCS, Tavares MM, Belardinelli de Azevedo C, Ruiz MCM, Mortari MR. Construct, Face, and Predictive Validity of Parkinson's Disease Rodent Models. Int J Mol Sci 2024; 25:8971. [PMID: 39201659 PMCID: PMC11354451 DOI: 10.3390/ijms25168971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease globally. Current drugs only alleviate symptoms without halting disease progression, making rodent models essential for researching new therapies and understanding the disease better. However, selecting the right model is challenging due to the numerous models and protocols available. Key factors in model selection include construct, face, and predictive validity. Construct validity ensures the model replicates pathological changes seen in human PD, focusing on dopaminergic neurodegeneration and a-synuclein aggregation. Face validity ensures the model's symptoms mirror those in humans, primarily reproducing motor and non-motor symptoms. Predictive validity assesses if treatment responses in animals will reflect those in humans, typically involving classical pharmacotherapies and surgical procedures. This review highlights the primary characteristics of PD and how these characteristics are validated experimentally according to the three criteria. Additionally, it serves as a valuable tool for researchers in selecting the most appropriate animal model based on established validation criteria.
Collapse
Affiliation(s)
- Rayanne Poletti Guimarães
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Maria Clara Souza de Resende
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Mesquita Tavares
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Caio Belardinelli de Azevedo
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| | - Miguel Cesar Merino Ruiz
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
- Neurological Rehabilitation Unit, Sarah Network of Rehabilitation Hospitals, Brasília 70335-901, Brazil
| | - Márcia Renata Mortari
- Neuropharma Lab, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, Brazil; (R.P.G.); (M.C.S.d.R.); (M.M.T.); (C.B.d.A.); (M.C.M.R.)
| |
Collapse
|
5
|
Ishimoto T, Oono M, Kaji S, Ayaki T, Nishida K, Funakawa I, Maki T, Matsuzawa SI, Takahashi R, Yamakado H. A novel mouse model for investigating α-synuclein aggregates in oligodendrocytes: implications for the glial cytoplasmic inclusions in multiple system atrophy. Mol Brain 2024; 17:28. [PMID: 38790036 PMCID: PMC11127389 DOI: 10.1186/s13041-024-01104-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/20/2024] [Indexed: 05/26/2024] Open
Abstract
The aggregated alpha-synuclein (αsyn) in oligodendrocytes (OLGs) is one of the pathological hallmarks in multiple system atrophy (MSA). We have previously reported that αsyn accumulates not only in neurons but also in OLGs long after the administration of αsyn preformed fibrils (PFFs) in mice. However, detailed spatial and temporal analysis of oligodendroglial αsyn aggregates was technically difficult due to the background neuronal αsyn aggregates. The aim of this study is to create a novel mouse that easily enables sensitive and specific detection of αsyn aggregates in OLGs and the comparable analysis of the cellular tropism of αsyn aggregates in MSA brains. To this end, we generated transgenic (Tg) mice expressing human αsyn-green fluorescent protein (GFP) fusion proteins in OLGs under the control of the 2', 3'-cyclic nucleotide 3'-phosphodiesterase (CNP) promoter (CNP-SNCAGFP Tg mice). Injection of αsyn PFFs in these mice induced distinct GFP-positive aggregates in the processes of OLGs as early as one month post-inoculation (mpi), and their number and size increased in a centripetal manner. Moreover, MSA-brain homogenates (BH) induced significantly more oligodendroglial αsyn aggregates than neuronal αsyn aggregates compared to DLB-BH in CNP-SNCAGFP Tg mice, suggestive of their potential tropism of αsyn seeds for OLGs. In conclusion, CNP-SNCAGFP Tg mice are useful for studying the development and tropism of αsyn aggregates in OLGs and could contribute to the development of therapeutics targeting αsyn aggregates in OLGs.
Collapse
Affiliation(s)
- Tomoyuki Ishimoto
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Miki Oono
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Seiji Kaji
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Takashi Ayaki
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Katsuya Nishida
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, 1314 Ohara, Sanda, 669-1592, Japan
| | - Itaru Funakawa
- Department of Neurology, National Hospital Organization Hyogo-Chuo National Hospital, 1314 Ohara, Sanda, 669-1592, Japan
| | - Takakuni Maki
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Shu-Ichi Matsuzawa
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Hodaka Yamakado
- Department of Neurology, Graduate School of Medicine, Kyoto University, 54 Shogoin-Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
| |
Collapse
|
6
|
Koyanagi Y, Kassai M, Yoneyama H. The Impact of Intestinal Microbiota and Toll-like Receptor 2 Signaling on α-Synuclein Pathology in Nontransgenic Mice Injected with α-Synuclein Preformed Fibrils. Microorganisms 2024; 12:106. [PMID: 38257933 PMCID: PMC10818728 DOI: 10.3390/microorganisms12010106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Intestinal microbiota and Toll-like receptor 2 (TLR2), which can bind lipoteichoic acid produced by microbiota, might contribute to the pathogenesis of Parkinson's disease (PD), which is characterized by α-synuclein accumulation. Although the contribution of intestinal microbiota and TLR2 to PD pathology was validated in genetic PD models, evidence suggests that the effects of TLR2 signaling on proteinopathy might depend on the presence of a genetic etiology. We examined the impact of intestinal microbiota and TLR2 signaling on α-synuclein pathology in a nontransgenic mouse model of sporadic PD. While an α-synuclein preformed fibrils injection successfully reproduced PD pathology by inducing accumulation of α-synuclein aggregates, microglial activation and increased TLR2 expression in the brains of nontransgenic mice, antibiotic-induced reduction in the density of intestinal microbiota and TLR2 knockout had small impact on these changes. These findings, which are in contrast to those reported in transgenic mice harboring transgene encoding α-synuclein, indicate that the contribution of intestinal microbiota and TLR2 signaling to α-synuclein pathogenesis might be influenced by the presence of a genetic etiology. Additionally, these findings suggest that integrating insights from this experimental model and genetic models would further advance our understanding of the molecular mechanisms underlying sporadic PD.
Collapse
Affiliation(s)
- Yukako Koyanagi
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan;
- Sumitomo Pharma Co., Ltd., Osaka 554-0022, Japan
| | - Momoe Kassai
- Sumitomo Pharma Co., Ltd., Osaka 554-0022, Japan
| | - Hiroshi Yoneyama
- Laboratory of Animal Microbiology, Department of Microbial Biotechnology, Graduate School of Agricultural Science, Tohoku University, Sendai 980-0845, Japan;
| |
Collapse
|
7
|
Dovonou A, Bolduc C, Soto Linan V, Gora C, Peralta Iii MR, Lévesque M. Animal models of Parkinson's disease: bridging the gap between disease hallmarks and research questions. Transl Neurodegener 2023; 12:36. [PMID: 37468944 PMCID: PMC10354932 DOI: 10.1186/s40035-023-00368-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/19/2023] [Indexed: 07/21/2023] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by motor and non-motor symptoms. More than 200 years after its first clinical description, PD remains a serious affliction that affects a growing proportion of the population. Prevailing treatments only alleviate symptoms; there is still neither a cure that targets the neurodegenerative processes nor therapies that modify the course of the disease. Over the past decades, several animal models have been developed to study PD. Although no model precisely recapitulates the pathology, they still provide valuable information that contributes to our understanding of the disease and the limitations of our treatment options. This review comprehensively summarizes the different animal models available for Parkinson's research, with a focus on those induced by drugs, neurotoxins, pesticides, genetic alterations, α-synuclein inoculation, and viral vector injections. We highlight their characteristics and ability to reproduce PD-like phenotypes. It is essential to realize that the strengths and weaknesses of each model and the induction technique at our disposal are determined by the research question being asked. Our review, therefore, seeks to better aid researchers by ensuring a concrete discernment of classical and novel animal models in PD research.
Collapse
Affiliation(s)
- Axelle Dovonou
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Cyril Bolduc
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Victoria Soto Linan
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Charles Gora
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Modesto R Peralta Iii
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada
| | - Martin Lévesque
- CERVO Brain Research Centre, 2601, Chemin de la Canardière, Québec, QC, G1J 2G3, Canada.
- Department of Psychiatry and Neurosciences, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
8
|
Okuda S, Nakayama T, Uemura N, Hikawa R, Ikuno M, Yamakado H, Inoue H, Tachibana N, Hayashi Y, Takahashi R, Egawa N. Striatal-Inoculation of α-Synuclein Preformed Fibrils Aggravated the Phenotypes of REM Sleep without Atonia in A53T BAC-SNCA Transgenic Mice. Int J Mol Sci 2022; 23:13390. [PMID: 36362177 PMCID: PMC9656146 DOI: 10.3390/ijms232113390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 07/29/2023] Open
Abstract
Accumulation of α-synuclein (α-syn) is the pathological hallmark of α-synucleinopathy. Rapid eye movement (REM) sleep behavior disorder (RBD) is a pivotal manifestation of α-synucleinopathy including Parkinson's disease (PD). RBD is clinically confirmed by REM sleep without atonia (RWA) in polysomnography. To accurately characterize RWA preceding RBD and their underlying α-syn pathology, we inoculated α-syn preformed fibrils (PFFs) into the striatum of A53T human α-syn BAC transgenic (A53T BAC-SNCA Tg) mice which exhibit RBD-like phenotypes with RWA. RWA phenotypes were aggravated by PFFs-inoculation in A53T BAC-SNCA Tg mice at 1 month after inoculation, in which prominent α-syn pathology in the pedunculopontine nucleus (PPN) was observed. The intensity of RWA phenotype could be dependent on the severity of the underlying α-syn pathology.
Collapse
Affiliation(s)
- Shinya Okuda
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Takeo Nakayama
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Norihito Uemura
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Rie Hikawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Masashi Ikuno
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Hodaka Yamakado
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Haruhisa Inoue
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center, Kyoto 619-0237, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Naoko Tachibana
- Department of Neurology, Center for Sleep-Related Disorders, Kansai Electric Power Hospital, Osaka 553-0003, Japan
- Division of Sleep Medicine, Kansai Electric Power Medical Research Institute, Osaka 553-0003, Japan
| | - Yu Hayashi
- Department of Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Naohiro Egawa
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center, Kyoto 619-0237, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|