1
|
Wichmann T, Nelson A, Torres ERS, Svenningsson P, Marongiu R. Leveraging animal models to understand non-motor symptoms of Parkinson's disease. Neurobiol Dis 2025; 208:106848. [PMID: 40023327 DOI: 10.1016/j.nbd.2025.106848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 03/04/2025] Open
Abstract
Parkinson's disease is diagnosed based on motor symptoms, but non-motor symptoms of the disease, such as cognitive impairment, autonomic dysfunction, hyposmia, sleep disorders, and psychiatric disorders heavily impact patient and caregiver quality of life. It has proven challenging to faithfully reproduce and quantify these non-motor phenotypes. Indeed, many non-motor signs in animals that may phenotypically resemble features in patients may be caused by different mechanisms or may not be consistent within the same or similar models. In this review, we survey the existing literature on the assessment of non-motor signs in parkinsonian rodents and non-human primates. We highlight the gaps in our understanding and suggest how researchers might improve experimental designs to produce more meaningful results with the hope of better understanding the disease and developing better therapies.
Collapse
Affiliation(s)
- Thomas Wichmann
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30329, USA; Udall Center of Excellence in Parkinson's Disease Research, Emory University, Atlanta, GA 30329, USA; Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Alexandra Nelson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA
| | - Eileen Ruth S Torres
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA
| | - Per Svenningsson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Basic and Clinical Neuroscience, King's College London, London, United Kingdom
| | - Roberta Marongiu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Department of Neurological Surgery, Weill Cornell Medicine, New York, New York, USA; Department of Genetic Medicine, New-York Hospital-Cornell Medical College, New York, NY, USA; Feil Family Brain and Mind Institute, New-York Hospital-Cornell Medical College, New York, NY, USA.
| |
Collapse
|
2
|
de Assis GG, de Sousa MBC, Murawska-Ciałowicz E. Sex Steroids and Brain-Derived Neurotrophic Factor Interactions in the Nervous System: A Comprehensive Review of Scientific Data. Int J Mol Sci 2025; 26:2532. [PMID: 40141172 PMCID: PMC11942429 DOI: 10.3390/ijms26062532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Sex steroids and the neurotrophin brain-derived neurotrophic factor (BDNF) participate in neural tissue formation, phenotypic differentiation, and neuroplasticity. These processes are essential for the health and maintenance of the central nervous system. AIM The aim of our review is to elucidate the interaction mechanisms between BDNF and sex steroids in neuronal function. METHOD A series of searches were performed using Mesh terms for androgen/receptors, estrogen/receptors, and BDNF/receptors, and a collection of the scientific data available on PubMed up to February 2025 about mechanical interactions between BDNF and sex steroids was included in this literature review. DISCUSSION This review discussed the influence of sex steroids on the formation and/or maintenance of neural circuits via different mechanisms, including the regulation of BDNF expression and signaling. Estrogens exert a time- and region-specific effect on BDNF synthesis. The nuclear estrogen receptor can directly regulate BDNF expression, independently of the presence of estrogen, in neuronal cells, whereas progesterone and testosterone upregulate BDNF expression via their specific nuclear receptors. In addition, testosterone has a positive effect on BDNF release by glial cells, which lack androgen receptors.
Collapse
Affiliation(s)
- Gilmara Gomes de Assis
- Escola Superior Desporto e Lazer, Instituto Politécnico de Viana do Castelo, Rua Escola Industrial e Comercial de Nun’Álvares, 4900-347 Viana do Castelo, Portugal
- Sport Physical Activity and Health Research & Innovation Center, 4900-347 Viana do Castelo, Portugal
| | | | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biomechanics, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
3
|
Qiao CM, Ma XY, Tan LL, Xia YM, Li T, Wu J, Cui C, Zhao WJ, Shen YQ. Indoleamine 2, 3-dioxygenase 1 inhibition mediates the therapeutic effects in Parkinson's disease mice by modulating inflammation and neurogenesis in a gut microbiota dependent manner. Exp Neurol 2025; 385:115142. [PMID: 39793693 DOI: 10.1016/j.expneurol.2025.115142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/27/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Abnormal tryptophan metabolism is closely linked with neurological disorders. Research has shown that indoleamine 2,3-dioxygenase 1 (IDO-1), the first rate-limiting enzyme in tryptophan degradation, is upregulated in Parkinson's disease (PD). However, the precise role of IDO-1 in PD pathogenesis remains elusive. In this study, we administered 1-methyl-tryptophan (1-MT), an IDO-1 inhibitor, intraperitoneally at 15 mg/kg daily for 21 days to PD mice induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 30 mg/kg daily for 5 days. Our results show that IDO-1 inhibition improves behavioral performance, reduces dopaminergic neuron loss, and decreases serum quinolinic acid (QA) content and the aryl hydrocarbon receptor (AHR) expression in the striatum and colon. It also alleviates glial-associated neuroinflammation and mitigates colonic inflammation (decreasing iNOS, COX2) by suppressing the Toll-like receptor 4/nuclear factor-κB (TLR4/NF-κB) pathway. Furthermore, IDO-1 inhibition promotes hippocampal neurogenesis (increasing doublecortin positive (DCX+) cells and SOX2+ cells), which have recently been recognized as key pathological features and potential therapeutic targets in PD, likely through the activation of the BDNF/TrkB pathway. We further explored the gut-brain connection by depleting the gut microbiota in mice using antibiotics. Notably, the neuroprotective effects of IDO-1 inhibition were completely abolished in pseudo-germ-free mice (administrated an antibiotic mixture orally for 14 days prior to 1-MT treatment), highlighting the dependency of 1-MT's neuroprotective effects on the presence of gut microbiota. Finally, we found IDO-1 inhibition corrects the abnormal elevation of fecal short chain fatty acids (SCFAs). Collectively, these findings suggest that IDO-1 inhibition may represent a promising therapeutic approach for PD.
Collapse
Affiliation(s)
- Chen-Meng Qiao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiao-Yu Ma
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Lu-Lu Tan
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yi-Meng Xia
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ting Li
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jian Wu
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chun Cui
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegenerative Diseases and Neuroinjury Diseases, Wuxi, School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China; MOE Medical Basic Research Innovation Center for Gut Microbiota and Chronic Diseases, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
4
|
Sadasivam N, Park WR, Choi B, Seok Jung Y, Choi HS, Kim DK. Exploring the impact of estrogen-related receptor gamma on metabolism and disease. Steroids 2024; 211:109500. [PMID: 39159854 DOI: 10.1016/j.steroids.2024.109500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024]
Abstract
Estrogen-related receptor gamma (ERRγ) is a member of the ERR orphan nuclear receptor family which possesses three subtypes, α, β, and γ. ERRγ is reportedly predominantly expressed in metabolically active tissues and cells, which promotes positive and negative effects in different tissues. ERRγ overexpression in the liver, pancreas, and thyroid cells is related to liver cancer, oxidative stress, reactive oxygen species (ROS) regulation, and carcinoma. Reduced ERRγ expression in the brain, immune cells, tumor cells, and energy metabolism causes neurological dysfunction, gastric cancer, and obesity. ERRγ is a constitutive receptor; however, its transcriptional activity also depends on co-regulators, agonists, and antagonists, which, when after forming a complex, can play a role in targeting and treating diseases. Moreover, ERRγ has proven crucial in regulating cellular and metabolic activity. However, many functions mediated via ERRγ remain unknown and require further exploration. Hence, considering the importance of ERRγ, this review focuses on the critical findings and interactions between ERRγ and co-regulators, agonists, and antagonists alongside its relationship with downstream and upstream signaling pathways and diseases. This review highlights new findings and provides a path to understanding the current ideas and future studies on ERRγ-mediated cellular activity.
Collapse
Affiliation(s)
- Nanthini Sadasivam
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Woo-Ram Park
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Byungyoon Choi
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Yoon Seok Jung
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Hueng-Sik Choi
- Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea; School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea; Host-Directed Antiviral Research Center, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
5
|
He W, Zhang S, Qi Z, Liu W. Unveiling the potential of estrogen: Exploring its role in neuropsychiatric disorders and exercise intervention. Pharmacol Res 2024; 204:107201. [PMID: 38704108 DOI: 10.1016/j.phrs.2024.107201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Neuropsychiatric disorders shorten human life spans through multiple ways and become major threats to human health. Exercise can regulate the estrogen signaling, which may be involved in depression, Alzheimer's disease (AD) and Parkinson's disease (PD), and other neuropsychiatric disorders as well in their sex differences. In nervous system, estrogen is an important regulator of cell development, synaptic development, and brain connectivity. Therefore, this review aimed to investigate the potential of estrogen system in the exercise intervention of neuropsychiatric disorders to better understand the exercise in neuropsychiatric disorders and its sex specific. Exercise can exert a protective effect in neuropsychiatric disorders through regulating the expression of estrogen and estrogen receptors, which are involved in neuroprotection, neurodevelopment, and neuronal glucose homeostasis. These processes are mediated by the downstream factors of estrogen signaling, including N-myc downstream regulatory gene 2 (Ndrg2), serotonin (5-HT), delta like canonical Notch ligand 1 (DLL1), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), etc. In addition, exercise can act on the estrogen response element (ERE) fragment in the genes of estrogenic downstream factors like β-amyloid precursor protein cleavase 1 (BACE1). However, there are few studies on the relationship between exercise, the estrogen signaling pathway, and neuropsychiatric disorders. Hence, we review how the estrogen signaling mediates the mechanism of exercise intervention in neuropsychiatric disorders. We aim to provide a theoretical perspective for neuropsychiatric disorders affecting female health and provide theoretical support for the design of exercise prescriptions.
Collapse
Affiliation(s)
- Wenke He
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Sen Zhang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China
| | - Zhengtang Qi
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| | - Weina Liu
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, East China Normal University, Shanghai 200241, China; College of Physical Education and Health, East China Normal University, Shanghai 200241,China.
| |
Collapse
|
6
|
Lim J, Park J, Lee W, Choi HJ. GSK4716 enhances 5-HT1AR expression by glucocorticoid receptor signaling in hippocampal HT22 cells. Neurol Res 2024; 46:398-405. [PMID: 38555524 DOI: 10.1080/01616412.2024.2322180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/02/2024]
Abstract
OBJECTIVES The serotonin (5-hydroxytryptamine, 5-HT) receptor 1A (5-HT1AR) is closely associated with serotonergic neurotransmission in the brain, being the most prevalent and widely distributed receptor of its kind. The purpose of this study is to investigate the regulation mechanism of 5-HT1AR by GSK4716. METHODS To investigate the mechanism of GSK4716-mediated 5-HT1AR regulation, we used hippocampus-derived HT22 cells expressing 5-HT1AR. The expression level of 5-HT1AR and associated proteins, were detected by reporter gene assay and western blotting. RESULTS GSK4716, an estrogen-related receptor gamma agonist increased 5-HT1AR expression by interacting with the GR, a repressor of 5-HT1AR transcription. Dexamethasone, a GR agonist, decreased the GSK4716-induced increase in 5-HT1AR, which was associated with an alteration in nuclear GR. Furthermore, GR antagonist RU486 reversed the effects induced by dexamethasone, including the elevation of nuclear GR levels and the reduction of 5-HT1AR transcription and expression. CONCLUSION The results could provide insight into the potential applications of small molecules, such as GSK4716, in the regulation of 5-HT1AR expression, which plays a role in serotonergic neurotransmission.
Collapse
Affiliation(s)
- Juhee Lim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Jiyeon Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Wonwoong Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Hyun Jin Choi
- College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Pocheon-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Kalinderi K, Papaliagkas V, Fidani L. Current genetic data on depression and anxiety in Parkinson's disease patients. Parkinsonism Relat Disord 2024; 118:105922. [PMID: 37935601 DOI: 10.1016/j.parkreldis.2023.105922] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/15/2023] [Accepted: 10/30/2023] [Indexed: 11/09/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder affecting about 1 % of the population over the age of 60 years. PD is characterized by a wide spectrum of symptomatology including not only motor symptoms but non-motor symptoms, as well. Depression is one of the most common non-motor manifestations, and the most frequent neuropsychiatric comorbidity in PD. Neuropsychiatric symptoms like depression and anxiety may precede the appearance of motor features, highlighting their importance in the early detection of the disease and its strategic management. This review discusses the possible genetic background of the development of these neuropsychiatric symptoms in PD patients analyzing current genetic data associated with this clinical entity.
Collapse
Affiliation(s)
- Kallirhoe Kalinderi
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| | - Vasileios Papaliagkas
- Department of Biomedical Sciences, School of Health Sciences, International Hellenic University, 57400, Thessaloniki, Greece
| | - Liana Fidani
- Laboratory of Medical Biology-Genetics, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
8
|
Alvarez‐Contino JE, Díaz‐Sánchez E, Mirchandani‐Duque M, Sánchez‐Pérez JA, Barbancho MA, López‐Salas A, García‐Casares N, Fuxe K, Borroto‐Escuela DO, Narváez M. GALR2 and Y1R agonists intranasal infusion enhanced adult ventral hippocampal neurogenesis and antidepressant-like effects involving BDNF actions. J Cell Physiol 2023; 238:459-474. [PMID: 36599082 PMCID: PMC10952952 DOI: 10.1002/jcp.30944] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/28/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023]
Abstract
Dysregulation of adult hippocampal neurogenesis is linked to major depressive disorder (MDD), with more than 300 million people diagnosed and worsened by the COVID-19 pandemic. Accumulating evidence for neuropeptide Y (NPY) and galanin (GAL) interaction was shown in various limbic system regions at molecular-, cellular-, and behavioral-specific levels. The purpose of the current work was to evaluate the proliferating role of GAL2 receptor (GALR2) and Y1R agonists interaction upon intranasal infusion in the ventral hippocampus. We studied their hippocampal proliferating actions using the proliferating cell nuclear antigen (PCNA) on neuroblasts or stem cells and the expression of the brain-derived neurothrophic factor (BDNF). Moreover, we studied the formation of Y1R-GALR2 heteroreceptor complexes and analyzed morphological changes in hippocampal neuronal cells. Finally, the functional outcome of the NPY and GAL interaction on the ventral hippocampus was evaluated in the forced swimming test. We demonstrated that the intranasal infusion of GALR2 and the Y1R agonists promotes neuroblasts proliferation in the dentate gyrus of the ventral hippocampus and the induction of the neurotrophic factor BDNF. These effects were mediated by the increased formation of Y1R-GALR2 heteroreceptor complexes, which may mediate the neurites outgrowth observed on neuronal hippocampal cells. Importantly, BDNF action was found necessary for the antidepressant-like effects after GALR2 and the Y1R agonists intranasal administration. Our data may suggest the translational development of new heterobivalent agonist pharmacophores acting on Y1R-GALR2 heterocomplexes in the ventral hippocampus for the novel therapy of MDD or depressive-affecting diseases.
Collapse
Affiliation(s)
- Jose Erik Alvarez‐Contino
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Estela Díaz‐Sánchez
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Grupo Hospitalario VithasVithas MálagaMálagaSpain
| | - Marina Mirchandani‐Duque
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Jose Andrés Sánchez‐Pérez
- Unit of Psychiatry, Instituto de Investigación Biomédica de MálagaHospital Universitario Virgen de la VictoriaMálagaSpain
| | - Miguel A. Barbancho
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Alexander López‐Salas
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Natalia García‐Casares
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
| | - Kjell Fuxe
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| | - Dasiel O. Borroto‐Escuela
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Department of NeuroscienceKarolinska InstituteStockholmSweden
- Department of Biomolecular Science, Section of PhysiologyUniversity of UrbinoUrbinoItaly
| | - Manuel Narváez
- Laboratorio NeuronLab, Instituto de Investigación Biomédica de Málaga, Facultad de MedicinaUniversidad de MálagaMalagaSpain
- Grupo Hospitalario VithasVithas MálagaMálagaSpain
- Department of NeuroscienceKarolinska InstituteStockholmSweden
| |
Collapse
|
9
|
Na SY, Kim KS, Jung YS, Kim DK, Kim J, Cho SJ, Lee IK, Chung J, Kim JS, Choi HS. An Inverse Agonist GSK5182 Increases Protein Stability of the Orphan Nuclear Receptor ERRγ via Inhibition of Ubiquitination. Int J Mol Sci 2022; 24:ijms24010096. [PMID: 36613556 PMCID: PMC9820335 DOI: 10.3390/ijms24010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The orphan nuclear receptor, estrogen-related receptor γ (ERRγ) is a constitutively active transcription factor involved in mitochondrial metabolism and energy homeostasis. GSK5182, a specific inverse agonist of ERRγ that inhibits transcriptional activity, induces a conformational change in ERRγ, resulting in a loss of coactivator binding. However, the molecular mechanism underlying the stabilization of the ERRγ protein by its inverse agonist remains largely unknown. In this study, we found that GSK5182 inhibited ubiquitination of ERRγ, thereby stabilizing the ERRγ protein, using cell-based assays and confocal image analysis. Y326 of ERRγ was essential for stabilization by GSK5182, as ligand-induced stabilization of ERRγ was not observed with the ERRγ-Y326A mutant. GSK5182 suppressed ubiquitination of ERRγ by the E3 ligase Parkin and subsequent degradation. The inhibitory activity of GSK5182 was strong even when the ERRγ protein level was elevated, as ERRγ bound to GSK5182 recruited a corepressor, small heterodimer partner-interacting leucine zipper (SMILE), through the activation function 2 (AF-2) domain, without alteration of the nuclear localization or DNA-binding ability of ERRγ. In addition, the AF-2 domain of ERRγ was critical for the regulation of protein stability. Mutants in the AF-2 domain were present at higher levels than the wild type in the absence of GSK5182. Furthermore, the ERRγ-L449A/L451A mutant was no longer susceptible to GSK5182. Thus, the AF-2 domain of ERRγ is responsible for the regulation of transcriptional activity and protein stability by GSK5182. These findings suggest that GSK5182 regulates ERRγ by a unique molecular mechanism, increasing the inactive form of ERRγ via inhibition of ubiquitination.
Collapse
Affiliation(s)
- Soon-Young Na
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Ki-Sun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Yoon Seok Jung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Don-Kyu Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jina Kim
- New Drug Development Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Sung Jin Cho
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41940, Republic of Korea
| | - Jongkyeong Chung
- SRC Center for Systems Geroscience, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeong-Sun Kim
- Department of Chemistry, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hueng-Sik Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Republic of Korea
- Correspondence: ; Tel.: +82-62-530-0503
| |
Collapse
|