1
|
Finsterer J. Congenital Myasthenic Syndrome With Adult Onset Due to the Novel Heterozygous c.1399_1404del Variant in the Downstream of Tyrosine Kinase-7 (DOK7): A Case Report. Cureus 2025; 17:e81690. [PMID: 40330390 PMCID: PMC12050350 DOI: 10.7759/cureus.81690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2025] [Indexed: 05/08/2025] Open
Abstract
Although mutations in the downstream of tyrosine kinase-7 (DOK7) are one of the most common causes of congenital myasthenic syndrome (CMS) in children and adults, CMS in adults due to the heterozygous variant c.1399_1404del in DOK7 has not yet been reported. A 63-year-old woman had developed bilateral eyelid ptosis at the age of 50, followed by dysphagia shortly thereafter. At the age of 60, in addition to dysphagia, she developed dysarthria and decreased cough. Her sister had a history of right eyelid ptosis. Myasthenia gravis and myasthenic syndrome, motor neuron disease, and myopathy were ruled out in the index patient. Pyridostigmine, steroids, azathioprine, methotrexate, mycophenolate mofetil, and immunoglobulins were either ineffective or complicated by side effects. Genetic testing at the age of 61 years revealed the variants c.1399_1404del and c.54+32_54+33del in DOK7. Late-onset CMS was diagnosed, and salbutamol and later 3,4-diaminopyridine (3,4-DAP) were started, both of which showed a positive effect. This case shows that the DOK7 variant c.1399_1404del is probably pathogenic and responsible for late-onset CMS, either alone or together with the previously reported benign variant c.54+32_54+33del. Salbutamol in combination with 3,4-DAP could be beneficial in patients carrying the c.1399_1404del mutation in DOK7.
Collapse
Affiliation(s)
- Josef Finsterer
- Neurology Department, Neurology and Neurophysiology Center, Vienna, AUT
| |
Collapse
|
2
|
Polavarapu K, Sunitha B, Töpf A, Preethish-Kumar V, Thompson R, Vengalil S, Nashi S, Bardhan M, Sanka SB, Huddar A, Unnikrishnan G, Arunachal G, Girija MS, Porter A, Azuma Y, Lorenzoni PJ, Baskar D, Anjanappa RM, Keertipriya M, Padmanabh H, Harikrishna GV, Laurie S, Matalonga L, Horvath R, Nalini A, Lochmüller H. Clinical and genetic characterisation of a large Indian congenital myasthenic syndrome cohort. Brain 2024; 147:281-296. [PMID: 37721175 PMCID: PMC10766255 DOI: 10.1093/brain/awad315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a rare group of inherited disorders caused by gene defects associated with the neuromuscular junction and potentially treatable with commonly available medications such as acetylcholinesterase inhibitors and β2 adrenergic receptor agonists. In this study, we identified and genetically characterized the largest cohort of CMS patients from India to date. Genetic testing of clinically suspected patients evaluated in a South Indian hospital during the period 2014-19 was carried out by standard diagnostic gene panel testing or using a two-step method that included hotspot screening followed by whole-exome sequencing. In total, 156 genetically diagnosed patients (141 families) were characterized and the mutational spectrum and genotype-phenotype correlation described. Overall, 87 males and 69 females were evaluated, with the age of onset ranging from congenital to fourth decade (mean 6.6 ± 9.8 years). The mean age at diagnosis was 19 ± 12.8 (1-56 years), with a mean diagnostic delay of 12.5 ± 9.9 (0-49 years). Disease-causing variants in 17 CMS-associated genes were identified in 132 families (93.6%), while in nine families (6.4%), variants in genes not associated with CMS were found. Overall, postsynaptic defects were most common (62.4%), followed by glycosylation defects (21.3%), synaptic basal lamina genes (4.3%) and presynaptic defects (2.8%). Other genes found to cause neuromuscular junction defects (DES, TEFM) in our cohort accounted for 2.8%. Among the individual CMS genes, the most commonly affected gene was CHRNE (39.4%), followed by DOK7 (14.4%), DPAGT1 (9.8%), GFPT1 (7.6%), MUSK (6.1%), GMPPB (5.3%) and COLQ (4.5%). We identified 22 recurrent variants in this study, out of which eight were found to be geographically specific to the Indian subcontinent. Apart from the known common CHRNE variants p.E443Kfs*64 (11.4%) and DOK7 p.A378Sfs*30 (9.3%), we identified seven novel recurrent variants specific to this cohort, including DPAGT1 p.T380I and DES c.1023+5G>A, for which founder haplotypes are suspected. This study highlights the geographic differences in the frequencies of various causative CMS genes and underlines the increasing significance of glycosylation genes (DPAGT1, GFPT1 and GMPPB) as a cause of neuromuscular junction defects. Myopathy and muscular dystrophy genes such as GMPPB and DES, presenting as gradually progressive limb girdle CMS, expand the phenotypic spectrum. The novel genes MACF1 and TEFM identified in this cohort add to the expanding list of genes with new mechanisms causing neuromuscular junction defects.
Collapse
Affiliation(s)
- Kiran Polavarapu
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Balaraju Sunitha
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SP, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Veeramani Preethish-Kumar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
- Department of Neurology, Neurofoundation, Salem, Tamil Nadu 636009, India
| | - Rachel Thompson
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
| | - Seena Vengalil
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Saraswati Nashi
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Mainak Bardhan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Sai Bhargava Sanka
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Akshata Huddar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
- Department of Neurology, St Johns Medical College Hospital, Bangalore 560034, India
| | - Gopikrishnan Unnikrishnan
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
- Department of Neurology, Amruta Institute of Medical Sciences, Kochi 682041, India
| | - Gautham Arunachal
- Department of Human Genetics, National Institute of Mental Health and Neurosciences, Bengaluru 560029, India
| | - Manu Santhappan Girija
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Anna Porter
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Yoshiteru Azuma
- John Walton Muscular Dystrophy Research Centre, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Paulo José Lorenzoni
- Neuromuscular Disorders Division, Service of Neurology, Department of Internal Medicine, Hospital de Clínicas, Universidade Federal do Paraná, Rua General Carneiro, Curitiba - PR 80060-900, Brazil
| | - Dipti Baskar
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Ram Murthy Anjanappa
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Madassu Keertipriya
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Hansashree Padmanabh
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | | | - Steve Laurie
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain
| | - Leslie Matalonga
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge School of Clinical Medicine, Cambridge CB2 0SP, UK
| | - Atchayaram Nalini
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bangalore 560029, India
| | - Hanns Lochmüller
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON K1H 8L1, Canada
- Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia 08028, Spain
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, ON K1H 8M5, Canada
- Department of Neuropediatrics and Muscle Disorders, Medical Center–University of Freiburg, Faculty of Medicine, Freiburg 79110, Germany
| |
Collapse
|
3
|
Ohno K, Ohkawara B, Shen XM, Selcen D, Engel AG. Clinical and Pathologic Features of Congenital Myasthenic Syndromes Caused by 35 Genes-A Comprehensive Review. Int J Mol Sci 2023; 24:ijms24043730. [PMID: 36835142 PMCID: PMC9961056 DOI: 10.3390/ijms24043730] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Congenital myasthenic syndromes (CMS) are a heterogeneous group of disorders characterized by impaired neuromuscular signal transmission due to germline pathogenic variants in genes expressed at the neuromuscular junction (NMJ). A total of 35 genes have been reported in CMS (AGRN, ALG14, ALG2, CHAT, CHD8, CHRNA1, CHRNB1, CHRND, CHRNE, CHRNG, COL13A1, COLQ, DOK7, DPAGT1, GFPT1, GMPPB, LAMA5, LAMB2, LRP4, MUSK, MYO9A, PLEC, PREPL, PURA, RAPSN, RPH3A, SCN4A, SLC18A3, SLC25A1, SLC5A7, SNAP25, SYT2, TOR1AIP1, UNC13A, VAMP1). The 35 genes can be classified into 14 groups according to the pathomechanical, clinical, and therapeutic features of CMS patients. Measurement of compound muscle action potentials elicited by repetitive nerve stimulation is required to diagnose CMS. Clinical and electrophysiological features are not sufficient to identify a defective molecule, and genetic studies are always required for accurate diagnosis. From a pharmacological point of view, cholinesterase inhibitors are effective in most groups of CMS, but are contraindicated in some groups of CMS. Similarly, ephedrine, salbutamol (albuterol), amifampridine are effective in most but not all groups of CMS. This review extensively covers pathomechanical and clinical features of CMS by citing 442 relevant articles.
Collapse
Affiliation(s)
- Kinji Ohno
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Correspondence: (K.O.); (A.G.E.)
| | - Bisei Ohkawara
- Division of Neurogenetics, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Duygu Selcen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Andrew G. Engel
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (K.O.); (A.G.E.)
| |
Collapse
|
5
|
Tsao CY. Effective Treatment With Albuterol in DOK7 Congenital Myasthenic Syndrome in Children. Pediatr Neurol 2016; 54:85-7. [PMID: 26552645 DOI: 10.1016/j.pediatrneurol.2015.09.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/17/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Congenital myasthenic syndromes consist of rare disorders resulting from mutations in genes encoding for presynaptic, synaptic, and postsynaptic proteins that are involved in the signal transmission of the neuromuscular junction. They are characterized by fatigable weakness of the skeletal muscles with symptom onset from birth to early childhood. DOK7 (downstream of tyrosine kinase 7) congenital myasthenic syndrome was previously treated successfully with ephedrine and salbutamol; however, both are unavailable in the United States. METHODS Case report of a child with muscle weakness. RESULTS This report describes a boy who presented only with progressive limb-girdle muscle weakness since age 2 years. The muscle biopsy with extensive studies revealed no obvious etiologies. His muscle weakness rapidly worsened, requiring a wheelchair for daily activities. Expanded neuromuscular gene panel promptly led to the diagnosis of DOK7 congenital myasthenic syndrome, and his muscle strength dramatically and persistently improved in four weeks with albuterol treatment, allowing him to walk independently. In a brief literature review, 15 patients (five treated between ages 5 and 17 years) from the Mayo Clinic with DOK7 mutations were also successfully treated with albuterol. CONCLUSION DOK7 congenital myasthenic syndrome often presents with limb-girdle muscle weakness, which can become progressive without proper treatment. If muscle biopsy reveals no obvious etiology, an expanded neuromuscular gene panel may lead to a specific diagnosis of congenital myasthenic syndrome such as those due to DOK7 mutation. Albuterol is often used to treat bronchial asthma; however, it can also dramatically and persistently improve the muscle strength of DOK7 congenital myasthenic syndrome.
Collapse
Affiliation(s)
- Chang-Yong Tsao
- Nationwide Children's Hospital, The Ohio State University, Columbus, Ohio.
| |
Collapse
|