1
|
Liu Y, Yu D, Ge X, Huang L, Pan PY, Shen H, Pettigrew RI, Chen SH, Mai J. Novel platinum therapeutics induce rapid cancer cell death through triggering intracellular ROS storm. Biomaterials 2025; 314:122835. [PMID: 39276409 PMCID: PMC11560510 DOI: 10.1016/j.biomaterials.2024.122835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/31/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Induction of reactive oxygen species (ROS) production in cancer cells plays a critical role for cancer treatment. However, therapeutic efficiency remains challenging due to insufficient ROS production of current ROS inducers. We designed a novel platinum (Pt)-based drug named "carrier-platin" that integrates ultrasmall Pt-based nanoparticles uniformly confined within a poly(amino acids) carrier. Carrier-platin dramatically triggered a burst of ROS in cancer cells, leading to cancer cell death as quick as 30 min. Unlike traditional Pt-based drugs which induce cell apoptosis through DNA intercalation, carrier-platin with superior ROS catalytic activities induces a unique pattern of cancer cell death that is neither apoptosis nor ferroptosis and operates independently of DNA damage. Importantly, carrier-platin demonstrates superior anti-tumor efficacy against a broad spectrum of cancers, particularly those with multidrug resistance, while maintaining minimal systemic toxicity. Our findings reveal a distinct mechanism of action of Pt in cancer cell eradication, positioning carrier-platin as a novel category of anti-cancer chemotherapeutics.
Collapse
Affiliation(s)
- Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| | - Dongfang Yu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Xueying Ge
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Lingyi Huang
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Ping-Ying Pan
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| | - Roderic I Pettigrew
- School of Engineering Medicine/ENMED, Texas A&M University and Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Shu-Hsia Chen
- Center for Immunotherapy and Neal Cancer Center, Houston Methodist Academic Institute, Houston, TX, 77030, USA; Weill Cornell Medical College, New York, NY, 10065, USA.
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, 77030, USA.
| |
Collapse
|
2
|
Cui L, Chen Z, Zeng F, Jiang X, Han X, Yuan X, Wu S, Feng H, Lin D, Lu W, Liu X, Peng X, Yu B. Impact of sex on treatment-related adverse effects and prognosis in nasopharyngeal carcinoma. BMC Cancer 2023; 23:1146. [PMID: 38007428 PMCID: PMC10676584 DOI: 10.1186/s12885-023-11564-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/24/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND In nasopharyngeal cancer (NPC), women have a lower incidence and mortality rate than men. Whether sex influences the prognosis of NPC patients remains debatable. We retrospectively examined the influence of sex on treatment-related side effects and prognosis in NPC. METHODS Clinical data of 1,462 patients with NPC treated at the Southern Hospital of Southern Medical University from January 2004 to December 2015 were retrospectively examined. Statistical analysis was performed to assess differences in overall survival (OS), distant metastasis-free survival (DMFS), local recurrence-free survival(LRFS), and progression-free survival(PFS), as well as treatment-related adverse effects, including myelosuppression, gastrointestinal responses, and radiation pharyngitis and dermatitis, between men and women. RESULTS Women had better 5-year OS (81.5% vs. 87.1%, P = 0.032) and DMFS (76.2% vs. 83.9%, P = 0.004) than men. Analysis by age showed that the prognoses of premenopausal and menopausal women were better than those of men, whereas prognoses of postmenopausal women and men were not significantly different. Additionally, women had a better prognosis when stratified by treatment regimen. Furthermore, chemotherapy-related adverse effects were more severe in women than in men; however, the incidences of radiation laryngitis and dermatitis were not significantly different between the sexes. Logistic regression analysis revealed that the female sex was an independent risk factor for severe myelosuppression and gastrointestinal reactions. CONCLUSIONS Chemotherapy-related side effects are more severe but the overall prognosis is better in women with NPC than in men with NPC. Patients may benefit from a personalized treatment approach for NPC. TRIAL REGISTRATION This study was approved by the Medical Ethics Committee of Nanfang Hospital of the Southern Medical University (NFEC-201,710-K3).
Collapse
Affiliation(s)
- Linchong Cui
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Zilu Chen
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Fangfang Zeng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Xiaolan Jiang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Xiaoyan Han
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Xiaofei Yuan
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Shuting Wu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Huiru Feng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Danfan Lin
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Wenxuan Lu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
| | - Xiaohong Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
| | - Bolong Yu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, PR China.
| |
Collapse
|
3
|
Georgiou-Siafis SK, Tsiftsoglou AS. The Key Role of GSH in Keeping the Redox Balance in Mammalian Cells: Mechanisms and Significance of GSH in Detoxification via Formation of Conjugates. Antioxidants (Basel) 2023; 12:1953. [PMID: 38001806 PMCID: PMC10669396 DOI: 10.3390/antiox12111953] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Glutathione (GSH) is a ubiquitous tripeptide that is biosynthesized in situ at high concentrations (1-5 mM) and involved in the regulation of cellular homeostasis via multiple mechanisms. The main known action of GSH is its antioxidant capacity, which aids in maintaining the redox cycle of cells. To this end, GSH peroxidases contribute to the scavenging of various forms of ROS and RNS. A generally underestimated mechanism of action of GSH is its direct nucleophilic interaction with electrophilic compounds yielding thioether GSH S-conjugates. Many compounds, including xenobiotics (such as NAPQI, simvastatin, cisplatin, and barbital) and intrinsic compounds (such as menadione, leukotrienes, prostaglandins, and dopamine), form covalent adducts with GSH leading mainly to their detoxification. In the present article, we wish to present the key role and significance of GSH in cellular redox biology. This includes an update on the formation of GSH-S conjugates or GSH adducts with emphasis given to the mechanism of reaction, the dependence on GST (GSH S-transferase), where this conjugation occurs in tissues, and its significance. The uncovering of the GSH adducts' formation enhances our knowledge of the human metabolome. GSH-hematin adducts were recently shown to have been formed spontaneously in multiples isomers at hemolysates, leading to structural destabilization of the endogenous toxin, hematin (free heme), which is derived from the released hemoglobin. Moreover, hemin (the form of oxidized heme) has been found to act through the Kelch-like ECH associated protein 1 (Keap1)-nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway as an epigenetic modulator of GSH metabolism. Last but not least, the implications of the genetic defects in GSH metabolism, recorded in hemolytic syndromes, cancer and other pathologies, are presented and discussed under the framework of conceptualizing that GSH S-conjugates could be regarded as signatures of the cellular metabolism in the diseased state.
Collapse
Affiliation(s)
| | - Asterios S. Tsiftsoglou
- Laboratory of Pharmacology, Department of Pharmaceutical Sciences, School of Health Sciences, Aristotle University of Thessaloniki (AUTh), 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Potęga A. Glutathione-Mediated Conjugation of Anticancer Drugs: An Overview of Reaction Mechanisms and Biological Significance for Drug Detoxification and Bioactivation. Molecules 2022; 27:molecules27165252. [PMID: 36014491 PMCID: PMC9412641 DOI: 10.3390/molecules27165252] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/26/2022] Open
Abstract
The effectiveness of many anticancer drugs depends on the creation of specific metabolites that may alter their therapeutic or toxic properties. One significant route of biotransformation is a conjugation of electrophilic compounds with reduced glutathione, which can be non-enzymatic and/or catalyzed by glutathione-dependent enzymes. Glutathione usually combines with anticancer drugs and/or their metabolites to form more polar and water-soluble glutathione S-conjugates, readily excreted outside the body. In this regard, glutathione plays a role in detoxification, decreasing the likelihood that a xenobiotic will react with cellular targets. However, some drugs once transformed into thioethers are more active or toxic than the parent compound. Thus, glutathione conjugation may also lead to pharmacological or toxicological effects through bioactivation reactions. My purpose here is to provide a broad overview of the mechanisms of glutathione-mediated conjugation of anticancer drugs. Additionally, I discuss the biological importance of glutathione conjugation to anticancer drug detoxification and bioactivation pathways. I also consider the potential role of glutathione in the metabolism of unsymmetrical bisacridines, a novel prosperous class of anticancer compounds developed in our laboratory. The knowledge on glutathione-mediated conjugation of anticancer drugs presented in this review may be noteworthy for improving cancer therapy and preventing drug resistance in cancers.
Collapse
Affiliation(s)
- Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|
5
|
Sthijns MMJPE, Rademakers T, Oosterveer J, Geuens T, van Blitterswijk CA, LaPointe VLS. The response of three-dimensional pancreatic alpha and beta cell co-cultures to oxidative stress. PLoS One 2022; 17:e0257578. [PMID: 35290395 PMCID: PMC8923503 DOI: 10.1371/journal.pone.0257578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
The pancreatic islets of Langerhans have low endogenous antioxidant levels and are thus especially sensitive to oxidative stress, which is known to influence cell survival and behaviour. As bioengineered islets are gaining interest for therapeutic purposes, it is important to understand how their composition can be optimized to diminish oxidative stress. We investigated how the ratio of the two main islet cell types (alpha and beta cells) and their culture in three-dimensional aggregates could protect against oxidative stress. Monolayer and aggregate cultures were established by seeding the alphaTC1 (alpha) and INS1E (beta) cell lines in varying ratios, and hydrogen peroxide was applied to induce oxidative stress. Viability, oxidative stress, and the level of the antioxidant glutathione were measured. Both aggregation and an increasing prevalence of INS1E cells in the co-cultures conferred greater resistance to cell death induced by oxidative stress. Increasing the prevalence of INS1E cells also decreased the number of alphaTC1 cells experiencing oxidative stress in the monolayer culture. In 3D aggregates, culturing the alphaTC1 and INS1E cells in a ratio of 50:50 prevented oxidative stress in both cell types. Together, the results of this study lead to new insight into how modulating the composition and dimensionality of a co-culture can influence the oxidative stress levels experienced by the cells.
Collapse
Affiliation(s)
- Mireille M. J. P. E. Sthijns
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jolien Oosterveer
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Geuens
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L. S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
6
|
Marcu LG. Gender and Sex-Related Differences in Normal Tissue Effects Induced by Platinum Compounds. Pharmaceuticals (Basel) 2022; 15:255. [PMID: 35215367 PMCID: PMC8876358 DOI: 10.3390/ph15020255] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/18/2022] Open
Abstract
Gender medicine in the field of oncology is an under-researched area, despite the existing evidence towards gender-dependent response to therapy and treatment-induced adverse effects. Oncological treatment aims to fulfil its main goal of achieving high tumour control by also protecting normal tissue from acute or chronic damage. Chemotherapy is an important component of cancer treatment, with a large number of drugs being currently in clinical use. Cisplatin is one of the most commonly employed chemotherapeutic agents, used either as a sole drug or in combination with other agents. Cisplatin-induced toxicities are well documented, and they include nephrotoxicity, neurotoxicity, gastrointestinal toxicity, ototoxicity, just to name the most frequent ones. Some of these toxicities have short-term sequelae, while others are irreversible. Furthermore, research showed that there is a strong gender-dependent aspect of side effects caused by the administration of cisplatin. While evidence towards sex differences in animal models is substantial, clinical studies considering sex/gender as a variable factor are limited. This work summarises the current knowledge on sex/gender-related side effects induced by platinum compounds and highlights the gaps in research that require more attention to open new therapeutic possibilities and preventative measures to alleviate normal tissue toxicity and increase patients' quality of life in both males and females.
Collapse
Affiliation(s)
- Loredana G. Marcu
- Faculty of Informatics & Science, Department of Physics, University of Oradea, 410087 Oradea, Romania;
- Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
7
|
Thiendedsakul P, Santativongchai P, Boonsoongnern P, Yodsheewan R, Tulayakul P. Glutathione-S-transferase activity in various organs of Crocodylus siamensis and its attenuation role in aflatoxin B1-induced cell apoptosis in human hepatocarcinoma cells. Vet World 2022; 15:46-54. [PMID: 35369592 PMCID: PMC8924382 DOI: 10.14202/vetworld.2022.46-54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Background and Aim: The crocodile is a model for studying relevant sources of environmental contamination. They were determined an appropriate biomonitoring species for various toxins. The cytosolic and microsomal fraction of crocodiles plays a role in detoxifying xenobiotics. Cytochrome P450 1A2 (CYP1A2) metabolizes aflatoxin B1 (AFB1) to aflatoxin M1, while glutathione-S-transferase (GST) catalyzes carcinogenic agents. This study aimed to investigate the GST activity in various organs of Crocodylus siamensis. Further, the fate of microsomal and cytosolic fractions from various crocodile organs against AFB1-induced apoptosis in human hepatocarcinoma (HepG2) cells was investigated. Materials and Methods: The liver, lungs, intestines, and kidneys tissues from a 3-year-old crocodile (C. siamensis) (n=5) were collected. The cytosolic and microsomal fraction of all tissues was extracted, and protein concentrations were measured with a spectrophotometer. Subsequently, a comparison of GST activity from various organs was carried out by spectrophotometry, and the protective effects of CYP450 and GST activity from various crocodile organs were studied. In vitro AFB1-induced apoptosis in HepG2 cells was detected by reverse transcription-quantitative polymerase chain reaction. Comparisons between the metabolisms of the detoxification enzyme in organs were tested using the Kruskal–Wallis one-way analysis of variance and Dunn’s multiple comparison tests. All kinetic parameters were analyzed using GraphPad Prism software version 5.01 (GraphPad Software Inc., San Diego, USA). Results: Total GST activity in the liver was significantly higher than in the kidneys, intestines, and lungs (p<0.05, respectively). The highest GST pi (GSTP) activity was found in the liver, while the highest GST alpha-isoform activity was in the crocodile lung. The kinetics of total GST and GST mu activity in the liver had the highest velocity compared to other organs. In contrast, the kinetics of GSTP enzyme activity was the highest in the intestine. The in vitro study of microsome and cytosol extract against apoptosis induced by AFB1 revealed that the level of messenger RNA expression of the Bax and Bad genes of HepG2 cells decreased in the treatment group in a combination of cytosolic and microsomal fractions of the crocodile liver but not for Bcl-2. Interestingly, the downregulated expression of Bax and Bad genes was also found in the microsome and cytosol of crocodile kidneys. Conclusion: The crocodile liver revealed very effective GST activity and expression of the highest kinetic velocity compared to other organs. The combination of liver microsomal and cytosolic fractions could be used to prevent cell apoptosis induced by AFB1. However, further study of the molecular approaches to enzyme activity and apoptosis prevention mechanisms should be carried out.
Collapse
Affiliation(s)
- Piriyaporn Thiendedsakul
- Department of Animal Health and Biomedical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Pitchaya Santativongchai
- Bio-Veterinary Science (International Program), Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Prapassorn Boonsoongnern
- Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Rungrueang Yodsheewan
- Department of Pathology, Faculty of Veterinary Medicine, Kasetsart University, Bangkok 10900, Thailand
| | - Phitsanu Tulayakul
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| |
Collapse
|
8
|
Zalachoras I, Hollis F, Ramos-Fernández E, Trovo L, Sonnay S, Geiser E, Preitner N, Steiner P, Sandi C, Morató L. Therapeutic potential of glutathione-enhancers in stress-related psychopathologies. Neurosci Biobehav Rev 2020; 114:134-155. [DOI: 10.1016/j.neubiorev.2020.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 12/11/2022]
|
9
|
Yang X, de Caestecker M, Otterbein LE, Wang B. Carbon monoxide: An emerging therapy for acute kidney injury. Med Res Rev 2019; 40:1147-1177. [PMID: 31820474 DOI: 10.1002/med.21650] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/31/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Treating acute kidney injury (AKI) represents an important unmet medical need both in terms of the seriousness of this medical problem and the number of patients. There is also a large untapped market opportunity in treating AKI. Over the years, there has been much effort in search of therapeutics with minimal success. However, over the same time period, new understanding of the underlying pathobiology and molecular mechanisms of kidney injury have undoubtedly helped the search for new therapeutics. Along this line, carbon monoxide (CO) has emerged as a promising therapeutic agent because of its demonstrated cytoprotective, and immunomodulatory effects. CO has also been shown to sensitize cancer, but not normal cells, to chemotherapy. This is particularly important in treating cisplatin-induced AKI, a common clinical problem that develops in patients receiving cisplatin therapies for a number of different solid organ malignancies. This review will examine and make the case that CO be developed into a therapeutic agent against AKI.
Collapse
Affiliation(s)
- Xiaoxiao Yang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Mark de Caestecker
- Division of Nephrology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Leo E Otterbein
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Binghe Wang
- Department of Chemistry and Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| |
Collapse
|
10
|
Macedo LT, Ferrari VE, Carron J, Costa EFD, Lopes-Aguiar L, Lourenço GJ, Lima CSP. Cost-minimization analysis of GSTP1c.313A>G genotyping for the prevention of cisplatin-induced nausea and vomiting: A Bayesian inference approach. PLoS One 2019; 14:e0213929. [PMID: 30870506 PMCID: PMC6417645 DOI: 10.1371/journal.pone.0213929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 03/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background Chemotherapy-induced nausea and vomiting are concerning adverse events resulting from cancer treatment, and current guidelines recommend the use of neurokinin-1-selective antagonists, such as fosaprepitant, in highly emetogenic schemes. However, the implementation of this strategy may be limited by the cost of treatment. GSTP1 c.313A>G genotype was recently described as a predictor of vomiting related to high-dose cisplatin. We hypothesized that the inclusion of routine GSTP1 c.313A>G screening may be promising in financial terms, in contrast to the wide-spread use of fosaprepitant. Methods A cost-minimization analysis was planned to compare GSTP1 c.313A>G genotyping versus overall fosaprepitant implementation for patients with head and neck cancer under chemoradiation therapy with high-dose cisplatin. A decision analytic tree was designed, and conditional probabilities were calculated under Markov chain Monte Carlo simulations using the Metropolis-Hastings algorithm. The observed data included patients under treatment without fosaprepitant, while priors were derived from published studies. Results To introduce screening with real-time polymerase chain reaction, an initial investment of U$ 39,379.97 would be required, with an amortization cost of U$ 7,272.97 per year. The mean cost of standard therapy with fosaprepitant is U$ 243.24 per patient, and although the initial cost of routine genotyping is higher, there is a tendency of progressive minimization at a threshold of 155 patients (Credible interval–CI: 119 to 216), provided more than one sample is incorporated for simultaneous analysis. A resulting reduction of 35.83% (CI: 30.31 to 41.74%) in fosaprepitant expenditures is then expected with the implementation of GSTP1 c.313A>G genotyping. Conclusion GSTP1 c.313A>G genotyping may reduce the use of preventive support for chemotherapy induced nausea and lower the overall cost of treatment. Despite the results of this simulation, randomized, interventional studies are required to control for known and unknown confounders as well as unexpected expenses.
Collapse
Affiliation(s)
- Ligia Traldi Macedo
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
- * E-mail:
| | - Vinicius Eduardo Ferrari
- Centre for Economics and Administration (CEA), Pontifical Catholic University of Campinas (PUCC), Campinas, Brazil
| | - Juliana Carron
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Leisa Lopes-Aguiar
- Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | | | | |
Collapse
|
11
|
Zhu LJ, Gu LS, Shi TY, Zhang XY, Sun BW. Enhanced treatment effect of nanoparticles containing cisplatin and a GSH-reactive probe compound. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:635-641. [PMID: 30606575 DOI: 10.1016/j.msec.2018.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/04/2018] [Accepted: 11/24/2018] [Indexed: 01/27/2023]
Abstract
Cisplatin is a highly effective antitumor drug, which can kill cancer cells by crossing-linking DNA and inhibiting transcription, but this process is limited by the combination of cisplatin and many endogenous nucleophiles, such as glutathione (GSH). Thus, when cisplatin enter cells, it is potentially vulnerable to cytoplasmic inactivation by GSH. To settle this bottleneck, we designed and synthesized a probe compound (Probe 1) and fabricated pH-responsed cisplatin, Probe 1-loaded lipid-polymer hybrid NanoParticles (CPNPs) using a single-step sonication method. Probe 1 can specifically bind to GSH, thus avoiding the combination of GSH and cisplatin, and enhancing the pharmacological activity of cisplatin. In vitro studies have suggested CPNPs, compared with cisplatin, loaded lipid-polymer hybrid NanoParticles CNPs (Not contain Probe 1), could efficiently kill MCF-7 human breast cancer cells and A549 human nonsmall lung cancer cell. Hence, the CPNPs provided a new idea for treating cancer.
Collapse
Affiliation(s)
- Ling-Jun Zhu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Lian-Shuai Gu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Tian-Yi Shi
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiang-Yang Zhang
- Laboratory of Organic Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Bai-Wang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China.
| |
Collapse
|
12
|
Tian Z, Tian X, Feng L, Tian Y, Huo X, Zhang B, Deng S, Ma X, Cui J. A highly sensitive and selective two-photon fluorescent probe for glutathione S-transferase detection and imaging in living cells and tissues. J Mater Chem B 2019; 7:4983-4989. [DOI: 10.1039/c9tb00834a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Design and development of a two-photon fluorescent probe for GST detection and imaging in living cells and deep tissues.
Collapse
Affiliation(s)
- Zhenhao Tian
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Ganjingzi District
- Dalian 116024
- China
| | - Xiangge Tian
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Lei Feng
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Yan Tian
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Xiaokui Huo
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Baojing Zhang
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Sa Deng
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Xiaochi Ma
- College of Pharmacy
- Academy of Integrative Medicine
- Dalian Medical University
- Dalian 116044
- China
| | - Jingnan Cui
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Ganjingzi District
- Dalian 116024
- China
| |
Collapse
|
13
|
Glutathione Conjugation at the Blood-CSF Barrier Efficiently Prevents Exposure of the Developing Brain Fluid Environment to Blood-Borne Reactive Electrophilic Substances. J Neurosci 2018; 38:3466-3479. [PMID: 29507144 DOI: 10.1523/jneurosci.2967-17.2018] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/01/2018] [Accepted: 02/17/2018] [Indexed: 02/06/2023] Open
Abstract
Exposure of the developing brain to toxins, drugs, or deleterious endogenous compounds during the perinatal period can trigger alterations in cell division, migration, differentiation, and synaptogenesis, leading to lifelong neurological impairment. The brain is protected by cellular barriers acting through multiple mechanisms, some of which are still poorly explored. We used a combination of enzymatic assays, live tissue fluorescence microscopy, and an in vitro cellular model of the blood-CSF barrier to investigate an enzymatic detoxification pathway in the developing male and female rat brain. We show that during the early postnatal period the choroid plexus epithelium forming the blood-CSF barrier and the ependymal cell layer bordering the ventricles harbor a high detoxifying capacity that involves glutathione S-transferases. Using a functional knock-down rat model for choroidal glutathione conjugation, we demonstrate that already in neonates, this metabolic pathway efficiently prevents the penetration of blood-borne reactive compounds into CSF. The versatility of the protective mechanism results from the multiplicity of the glutathione S-transferase isoenzymes, which are differently expressed between the choroidal epithelium and the ependyma. The various isoenzymes display differential substrate specificities, which greatly widen the spectrum of molecules that can be inactivated by this pathway. In conclusion, the blood-CSF barrier and the ependyma are identified as key cellular structures in the CNS to protect the brain fluid environment from different chemical classes of potentially toxic compounds during the postnatal period. This metabolic neuroprotective function of brain interfaces ought to compensate for the liver postnatal immaturity.SIGNIFICANCE STATEMENT Brain homeostasis requires a stable and controlled internal environment. Defective brain protection during the perinatal period can lead to lifelong neurological impairment. We demonstrate that the choroid plexus forming the blood-CSF barrier is a key player in the protection of the developing brain. Glutathione-dependent enzymatic metabolism in the choroidal epithelium inactivates a broad spectrum of noxious compounds, efficiently preventing their penetration into the CSF. A second line of detoxification is located in the ependyma separating the CSF from brain tissue. Our study reveals a novel facet of the mechanisms by which the brain is protected at a period of high vulnerability, at a time when the astrocytic network is still immature and liver xenobiotic metabolism is limited.
Collapse
|
14
|
Sacco J, Mann S, Toral K. Single nucleotide polymorphisms and microsatellites in the canine glutathione S-transferase pi 1 ( GSTP1) gene promoter. Canine Genet Epidemiol 2017; 4:9. [PMID: 29046813 PMCID: PMC5635497 DOI: 10.1186/s40575-017-0050-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/19/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Genetic polymorphisms within the glutathione S-transferase P1 (GSTP1) gene affect the elimination of toxic xenobiotics by the GSTP1 enzyme. In dogs, exposure to environmental chemicals that may be GSTP1 substrates is associated with cancer. The objectives of this study were to investigate the genetic variability in the GSTP1 promoter in a diverse population of 278 purebred dogs, compare the incidence of any variants found between breeds, and predict their effects on gene expression. To provide information on ancestral alleles, a number of wolves, coyotes, and foxes were also sequenced. RESULTS Fifteen single nucleotide polymorphisms (SNPs) and two microsatellites were discovered. Three of these loci were only polymorphic in dogs while three other SNPs were unique to wolves and coyotes. The major allele at c.-46 is T in dogs but is C in the wild canids. The c.-185 delT variant was unique to dogs. The microsatellite located in the 5' untranslated region (5'UTR) was a highly polymorphic GCC tandem repeat, consisting of simple and compound alleles that varied in size from 10 to 22-repeat units. The most common alleles consisted of 11, 16, and 17-repeats. The 11-repeat allele was found in 10% of dogs but not in the other canids. Unequal recombination and replication slippage between similar and distinct alleles may be the mechanism for the multiple microsatellites observed. Twenty-eight haplotypes were constructed in the dog, and an additional 8 were observed in wolves and coyotes. While the most common haplotype acrossbreeds was the wild-type *1A(17), other prevalent haplotypes included *3A(11) in Greyhounds, *6A(16) in Labrador Retrievers, *9A(16) in Golden Retrievers, and *8A(19) in Standard Poodles. Boxers and Siberian Huskies exhibited minimal haplotypic diversity. Compared to the simple 16*1 allele, the compound 16*2 allele (found in 12% of dogs) may interfere with transcription factor binding and/or the stability of the GSTP1 transcript. CONCLUSIONS Dogs and other canids exhibit extensive variation in the GSTP1 promoter. Genetic polymorphisms within distinct haplotypes prevalent in certain breeds can affect GSTP1 expression and carcinogen detoxification, and thus may be useful as genetic markers for cancer in dogs.
Collapse
Affiliation(s)
- James Sacco
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311 USA
| | - Sarah Mann
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311 USA
| | - Keller Toral
- Ellis Pharmacogenomics Laboratory, College of Pharmacy and Health Sciences, Drake University, Des Moines, IA 50311 USA
| |
Collapse
|
15
|
Liu S, Yang H, Chen Y, He B, Chen Q. Krüppel-Like Factor 4 Enhances Sensitivity of Cisplatin to Lung Cancer Cells and Inhibits Regulating Epithelial-to-Mesenchymal Transition. Oncol Res 2017; 24:81-7. [PMID: 27296948 PMCID: PMC7838665 DOI: 10.3727/096504016x14597766487717] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
In order to improve therapeutic efficacy, it is a current emergency to better know the mechanisms underlying cisplatin resistance in lung cancer cells. In this study, we aim to investigate the role of Krüppel-like factor 4 (KLF4) in cisplatin-resistant lung cancer cells. We developed cisplatin-resistant lung cancer cell line A549/DDP, and then a battery of experiments was used to analyze the effects of KLF4 in cisplatin resistance of lung cancer. We found that KLF4 was significantly downregulated in cisplatin-resistant A549 cells and forced KLF4 expression inhibited cell growth and induced apoptosis. Further, we found that overexpression of KLF4 was able to inhibit cell migration and invasion, to inhibit the expression of Slug, Twist, and vimentin, and to increase the expression of E-cadherin and subsequent inhibition of the EMT process. Thus, overexpression of KLF4 may be a potential strategy for lung cancer treatment, especially for cisplatin-resistant cases.
Collapse
Affiliation(s)
- Shenggang Liu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | | | | | | | | |
Collapse
|