1
|
Long M, Pei X, Lu Z, Xu D, Zheng N, Li Y, Ge H, Cao W, Osire T, Xia X. Effective degradation of anthraquinones in Folium Sennae with Monascus fermentation for toxicity reduce and efficacy enhancement. Heliyon 2023; 9:e18735. [PMID: 37560635 PMCID: PMC10407211 DOI: 10.1016/j.heliyon.2023.e18735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Folium Sennae are widely used around the world, mainly in purging and removal of endogenous active substances, such as anthraquinone and its derivatives. However, the potential toxicity of anthraquinones to the liver, kidney, and intestinal limits the application of Folium Sennae. In this study, we aimed at safe regulation of Folium Sennae to degrade anthraquinones, boosting medicinal properties and reducing toxicity and potency with Monascus fermentation. Monascus strains H1102 for Folium Sennae fermentation were selected as the initial strain which was capable of producing high yields of functional pigment and low yields of hazardous citrinin. The anthraquinone degradation rate reached 41.2%, with 212.2 U mL-1 of the pigment and approximately 0.038 mg L-1 of the citrinin under optimal fermentation conditions followed by response surface streamlining, which met the requirements of reducing toxicity, increasing efficiency of Monascus fermented Folium Sennae. Furthermore, the Monascus/Folium Sennae culture had no observable toxic effect on HK-2 and L-02 cells in vitro and further inhibited cell apoptosis and necrosis. Overall, our results showed that Monascus fermentation could provide an alternative strategy for toxicity reduction of herbal medicines as well as efficacy enhancement.
Collapse
Affiliation(s)
- Mengfei Long
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaomei Pei
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhi Lu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Infinitus (China) Co. Ltd., Guangzhou, 510665, China
| | - Duo Xu
- Wuxi Dipont School of Arts and Science, Wuxi, 214122, China
| | - Nan Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yaxian Li
- Infinitus (China) Co. Ltd., Guangzhou, 510665, China
| | - Hanxiao Ge
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Wentao Cao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tolbert Osire
- Faculty of Biology, Shenzhen MSU-BIT University, Shenzhen, 518172, Guangdong, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
2
|
Gao H, Gao CC, Wang TT, Gao L, Li GW, Jin LY, He CW, Wang BY, Zhang L, Guo YX, Hua RX, Shang HW, Xu JD. An Unexpected Alteration Colonic Mucus Appearance in the Constipation Model via an Intestinal Microenvironment. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-14. [PMID: 35644608 DOI: 10.1017/s1431927622000836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the lack of research between the inner layers in the structure of colonic mucous and the metabolism of fatty acid in the constipation model, we aim to determine the changes in the mucous phenotype of the colonic glycocalyx and the microbial community structure following treatment with Rhubarb extract in our research. The constipation and treatment models are generated using adult male C57BL/6N mice. We perform light microscopy and transmission electron microscopy (TEM) to detect a Muc2-rich inner mucus layer attached to mice colon under different conditions. In addition, 16S rDNA sequencing is performed to examine the intestinal flora. According to TEM images, we demonstrate that Rhubarb can promote mucin secretion and find direct evidence of dendritic structure-linked mucus structures with its assembly into a lamellar network in a pore size distribution in the isolated colon section. Moreover, the diversity of intestinal flora has noticeable changes in constipated mice. The present study characterizes a dendritic structure and persistent cross-links have significant changes accompanied by the alteration of intestinal flora in feces in models of constipation and pretreatment with Rhubarb extract.
Collapse
Affiliation(s)
- Han Gao
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Chen-Chen Gao
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Biomedical Informatics, School of Biomedical Engineering, Capital Medical University, Beijing 100069, China
| | - Guang-Wen Li
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Liang-Yun Jin
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China
| | - Cheng-Wei He
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Bo-Ya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing 100069, China
| | - Lucia Zhang
- Class of 2025, Loomis Chaffee School, 4 Batchelder Road, Windsor, CT 06095, USA
| | - Yue-Xin Guo
- Oral Medicine "5+3" process, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Rong-Xuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Exploring Molecular Mechanisms of Aloe barbadmsis Miller on Diphenoxylate-Induced Constipation in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:6225758. [PMID: 35571728 PMCID: PMC9106447 DOI: 10.1155/2022/6225758] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 04/02/2022] [Indexed: 11/17/2022]
Abstract
Aloe barbadensis Miller (Aloe) known as a common succulent perennial herb had been traditionally used in constipation for more than 1,000 years. Aloe contained anthraquinones and other active compounds which had laxative effect and could modulate constipation. However, the therapeutic effects and mechanisms of aloe in constipation were still unclear. To explore the therapeutic effects and mechanisms of aloe in treating constipation, we employed network pharmacology, molecular docking, and mice experiments in this study. Our network pharmacology indicated that beta-carotene, sitosterol, campest-5-en-3beta-ol, CLR, arachidonic acid, aloe-emodin, quercetin, and barbaloin were the main active ingredients of aloe in treating constipation. Besides, the MAPK signaling pathway was the principal pathway utilized by aloe in treating constipation. Molecular docking results revealed that beta-carotene and sitosterol were acting as interference factors in attenuating inflammation by binding to an accessory protein of ERK, JNK, AKT, and NF-κB p65. Otherwise, in vivo experiments, we used diphenoxylate-induced constipation mice model to explore the therapeutic effects and mechanisms of aloe. Results showed that aloe modulated the constipation mice by reducing the discharge time of first melena, improving the fecal conditions, increasing the gastric intestinal charcoal transit ratio, and improving the intestinal secretion in small intestine. Besides, aloe played an important regulation in promoting intestinal motility sufficiency and the levels of neurotransmitters balance with 5-HT, SP, and VIP on constipation mice. Moreover, aloe significantly inhibited the mRNA and proteins expressions of ERK, JNK, AKT and NF-κB p65 in colon. Our study proved that aloe could reverse diphenoxylate-induced changes relating to the intestinal motility, intestinal moisture, and inhibition of the MAPK (ERK, JNK)/AKT/NF-κB p65 inflammatory pathway. Our study provided experimental evidences of the laxative effect of aloe, which was beneficial to the further research and development of aloe.
Collapse
|
4
|
The therapeutic effect of Xuanbai Chengqi Decoction on chronic obstructive pulmonary disease with excessive heat in the lung and fu-organs based on gut and lung microbiota as well as metabolic profiles. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198:123250. [DOI: 10.1016/j.jchromb.2022.123250] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/03/2022] [Accepted: 04/07/2022] [Indexed: 12/29/2022]
|
5
|
Czigle S, Bittner Fialová S, Tóth J, Mučaji P, Nagy M, on behalf of the OEMONOM. Treatment of Gastrointestinal Disorders-Plants and Potential Mechanisms of Action of Their Constituents. Molecules 2022; 27:2881. [PMID: 35566230 PMCID: PMC9105531 DOI: 10.3390/molecules27092881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The worldwide prevalence of gastrointestinal diseases is about 40%, with standard pharmacotherapy being long-lasting and economically challenging. Of the dozens of diseases listed by the Rome IV Foundation criteria, for five of them (heartburn, dyspepsia, nausea and vomiting disorder, constipation, and diarrhoea), treatment with herbals is an official alternative, legislatively supported by the European Medicines Agency (EMA). However, for most plants, the Directive does not require a description of the mechanisms of action, which should be related to the therapeutic effect of the European plant in question. This review article, therefore, summarizes the basic pharmacological knowledge of synthetic drugs used in selected functional gastrointestinal disorders (FGIDs) and correlates them with the constituents of medicinal plants. Therefore, the information presented here is intended as a starting point to support the claim that both empirical folk medicine and current and decades-old treatments with official herbal remedies have a rational basis in modern pharmacology.
Collapse
Affiliation(s)
- Szilvia Czigle
- Department of Pharmacognosy and Botany, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia; (S.B.F.); (J.T.); (P.M.); (M.N.)
| | | | | | | | | | | |
Collapse
|
6
|
Chen JQ, Chen YY, Du X, Tao HJ, Pu ZJ, Shi XQ, Yue SJ, Zhou GS, Shang EX, Tang YP, Duan JA. Fuzzy identification of bioactive components for different efficacies of rhubarb by the back propagation neural network association analysis of UPLC-Q-TOF/MS E and integrated effects. Chin Med 2022; 17:50. [PMID: 35473719 PMCID: PMC9040240 DOI: 10.1186/s13020-022-00612-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Background Rhei Radix et Rhizoma (rhubarb), as one of the typical representatives of multi-effect traditional Chinese medicines (TCMs), has been utilized in the treatment of various diseases due to its multicomponent nature. However, there are few systematic investigations for the corresponding effect of individual components in rhubarb. Hence, we aimed to develop a novel strategy to fuzzily identify bioactive components for different efficacies of rhubarb by the back propagation (BP) neural network association analysis of ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry for every data (UPLC-Q-TOF/MSE) and integrated effects. Methods Through applying the fuzzy chemical identification, most components of rhubarb were classified into different chemical groups. Meanwhile the integration effect values of different efficacies can be determined by animal experiment evaluation and multi-attribute comprehensive indexes. Then the BP neural network was employed for association analysis of components and different efficacies by correlating the component contents determined from UPLC-Q-TOF/MSE profiling and the integration effect values. Finally, the effect contribution of one type of components may be totaled to demonstrate the universal and individual characters for different efficacies of rhubarb. Results It suggested that combined anthraquinones, flavanols and their polymers may be the universal character to the multi-functional properties of rhubarb. Other components contributed to the individuality of rhubarb efficacies, including stilbene glycosides, anthranones and their dimers, free anthraquinones, chromones, gallic acid and gallotannins, butyrylbenzenes and their glycosides. Conclusions Our findings demonstrated that the bioactive components for different efficacies of rhubarb were not exactly the same and can be systematically differentiated by the network-oriented strategy. These efforts will advance our knowledge and understanding of the bioactive components in rhubarb and provide scientific evidence to support the expansion of its use in clinical applications and the further development of some products based on this medicinal herb. Supplementary information The online version contains supplementary material available at 10.1186/s13020-022-00612-9.
Collapse
Affiliation(s)
- Jia-Qian Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China.,Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China
| | - Xia Du
- Shaanxi Academy of Traditional Chinese Medicine, 710003, Xi'an, Shaanxi Province, China
| | - Hui-Juan Tao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Zong-Jin Pu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Xu-Qin Shi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China
| | - Gui-Sheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Er-Xin Shang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, 712046, Xi'an, Shaanxi Province, China.
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu Province, China
| |
Collapse
|
7
|
Hong Y, Ren X, Liu W, Sun K, Chen B, Liu B, Yu X, Chen Q, Qian Q, Xie X, Jiang C. miR-128 participates in the pathogenesis of chronic constipation by regulating the p38α/M-CSF inflammatory signaling pathway. Am J Physiol Gastrointest Liver Physiol 2021; 321:G436-G447. [PMID: 34405716 DOI: 10.1152/ajpgi.00114.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/10/2021] [Indexed: 02/08/2023]
Abstract
Chronic constipation (CC) is a gastrointestinal disorder that adversely affects the quality of life. MicroRNAs are involved in the pathogenesis of functional gastrointestinal disorders. This study aims to investigate the molecular mechanism of microRNA-128 in CC. Here, we successfully constructed a murine model of CC based on morphine and rhubarb. The expression of stem cell factor (SCF) and neuron-specific enolase (NSE) was low in the models. Using miRNA array and bioinformatic analysis, we predicted and confirmed the expression of miR-128 and its downstream target genes in CC model. Compared with the control group, CC group showed a significant downregulation of miR-128 and upregulation of p38α and macrophage colony-stimulating factors (M-CSFs). Moreover, we observed elevated inflammatory cytokine and decreased anti-inflammatory cytokine levels in colonic tissues. Furthermore, coculture assays indicated that regulating expression of miR-128 in colonic epithelial cells induced the secretion of IL-6 and TNF-α by macrophages. In conclusion, our study demonstrated that miR-128 regulated the p38α/M-CSF signaling pathway to promote chronic inflammatory responses and changes in the immune microenvironment of the colon, thereby offering potential insights into the pathogenesis of CC and therapeutic targets for its treatment.NEW & NOTEWORTHY In this study, we constructed a murine model and identified a novel signaling mechanism involved in the chronic constipation progression. Our findings on the role of miR-128/p38α/M-CSF axis provide new insights into the treatment of chronic constipation.
Collapse
Affiliation(s)
- Yuntian Hong
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Weicheng Liu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Kongliang Sun
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Bo Liu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xueqiao Yu
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Quanjiao Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, CAS Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Wuhan, People's Republic of China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Xiaoyu Xie
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Wuhan, People's Republic of China
- Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Colorectal and Anal Disease Research Center of Medical School, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
- Quality Control Center of Colorectal and Anal Surgery of Health Commission of Hubei Province, Wuhan, People's Republic of China
| |
Collapse
|
8
|
Akram M, Thiruvengadam M, Zainab R, Daniyal M, Bankole MM, Rebezov M, Shariati MA, Okuskhanova E. Herbal Medicine for the Management of Laxative Activity. Curr Pharm Biotechnol 2021; 23:1269-1283. [PMID: 34387161 DOI: 10.2174/1389201022666210812121328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 07/23/2021] [Indexed: 11/22/2022]
Abstract
Constipation is one of the most common and prevalent chronic gastrointestinal conditions across the globe that is treated or managed through various methods. Laxatives are used for the treatment or management of chronic/acute constipation. But due to the adverse effects associated with these laxatives, herbal foods should be considered as alternative therapies for constipation. In this review, the laxative potential of plant-based medicines used for constipation were discussed. Constipation may be caused by various factors such as lifestyle, particular food habits, pregnancy and even due to some medication. Chronic constipation is responsible for different health issues. Pharmacological and non-pharmacological paradigms are applied for the treatment or management of constipation. In the pharmacological way of treatment, medicinal plants have a key role, because of their fibrous nature. Numerous plants such as Prunus persica (Rosaceae), Cyamopsis tetragonolobus (Leguminosae), Citrus sinensis (Rutaceae), Planta goovata (Plantaginaceae), Rheum emodi (Polygonaceae), Cassia auriculata (Caesalpinacea), Ricinus communis (Euphorbiaceae), Croton tiglium (Euphorbiaceae), Aloe barbadensis (Liliaceae), Mareya micrantha (Euphorbiaceae), Euphorbia thymifolia (Euphorbiaceae), Cascara sagrada (Rhamnaceae), Cassia angustifolia (Fabaceae) have laxative activity. Medicinal plants possess a significant laxative potential and support their folklore therefore, further, well-designed clinical-based studies are required to prove and improve the efficacy of herbal medicine for constipation. The present review showed that herbs laxative effect in various in-vivo/ in-vitro models.
Collapse
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine, Government College University Faisalabad. Pakistan
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029. South Korea
| | - Rida Zainab
- Department of Eastern Medicine, Government College University Faisalabad. Pakistan
| | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University, Karachi. Pakistan
| | - Marc Moboladji Bankole
- African Centre of Excellence (World Bank) Public Health and Toxicological Research (ACE-PUTOR) University of Port Harcourt, Rivers State. Nigeria
| | - Maksim Rebezov
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, Moscow. Russian Federation
| | - Mohammad Ali Shariati
- K.G. Razumovsky Moscow State University of Technologies and Management (the First Cossack University), 109004, Moscow. Russian Federation
| | | |
Collapse
|
9
|
Liang C, Hui N, Liu Y, Qiao G, Li J, Tian L, Ju X, Jia M, Liu H, Cao W, Yu P, Li H, Ren X. Insights into forsythia honeysuckle (Lianhuaqingwen) capsules: A Chinese herbal medicine repurposed for COVID-19 pandemic. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 1:100027. [PMID: 35399819 PMCID: PMC7833308 DOI: 10.1016/j.phyplu.2021.100027] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 04/17/2023]
Abstract
Background In December 2019, a novel coronavirus, SARS-CoV-2 caused a series of acute atypical respiratory diseases worldwide. However, there is still a lack of drugs with clear curative effects, and the clinical trial research of vaccines has not been completely finished. Purpose LH capsules are approved TCM patent medicine that are widely used for the treatment of respiratory tract infectious diseases caused by colds and flu. On April 12, 2020, LH capsules and granules were officially repurposed by the China Food and Drug Administration (CFDA) for patients with mild COVID-19 based on their safety and efficacy demonstrated through multicentre, randomized, controlled clinical trials. We hope to conduct a comprehensive review of it through modern pharmacy methods, and try to explain its possible mechanism. Methods Using the full names of LH capsules Lianhuaqingwen, Lianhua Qingwen andSARS-COV-2, COVID-19 as the keywords of the search terms, systemically search for existing related papers in various databases such as Web of Science and PubMed. And completed the collection of clinical data in ClinicalTrials.gov and Chinese Clinical Trial Registry. Last but not least, we have sorted out the anti-inflammatory and antiviral mechanisms of LH capsules through literature and Selleck. Results This review systematically sorted out the active ingredients in LH capsules. Furthermore, the related pharmacological and clinical trials of LH capsule on SARS-CoV-2, IAV and IBV were discussed in detail. Moreover, the present review provides the first summary of the potential molecular mechanism of specific substances in LH capsules involved in resistance to SARS-COV-2 infection and the inhibition of cytokine storm syndrome (CSS) caused by IL-6. Conclusion This review summarizes the available reports and evidence that support the use of LH capsules as potential drug candidates for the prevention and treatment of COVID-19. However, TCM exerts its effects through multiple targets and multiple pathways, and LH capsules are not an exception. Therefore, the relevant mechanisms need to be further improved and experimentally verified.
Collapse
Key Words
- 3C-like protease (3CLpro)
- 3CLpro, 3C-like protease
- ACE2, Angiotensin-converting enzyme 2
- AECOPD, Acute exacerbation of chronic obstructive pulmonary disease
- AIDS, Acquired immune deficiency syndrome
- AQP3, Aquaporins 3
- ARDS, Acute respiratory distress syndrome
- CAT, COPD assessment test
- CC50, 50% Cytotoxic concentration
- CCL-2/MCP-1, C—C motif ligand 2/monocyte chemoattractant protein-1
- CFDA, China Food and Drug Administration
- COPD, Chronic obstructive pulmonary disease
- COVID-19
- COVID-19, Coronavirus disease 2019
- CPE, Cytopathic effect
- CSS, Cytokine storm syndrome
- CT, Computed tomography
- CXCL-10/IP-10, C-X-C Motif Chemokine Ligand 10/ Interferon Gamma-induced Protein 10
- Cytokine storm syndrome (CSS)
- DMSO, Dimethyl sulfoxide
- E protein, Envelope protein
- ERK, Extracellular signal-regulated kinase
- FBS, Fatal bovine serum
- Forsythia honeysuckle (Lianhuaqingwen,LH) capsules
- Grb2, Growth factor receptor-bound protein 2
- HIV, Human immunodeficiency virus
- HPLC, High-performance liquid chromatography
- HSV-1, Herpes simplex virus type 1
- HVJ, Hemagglutinating virus of Japan
- Hep-2, Human epithelial type 2
- Huh-7, Human Hepatocellular Carcinoma-7
- IAV, Influenza A virus
- IBV, Influenza B virus
- IC50, 50% Inhibition concentration
- IFN-λ1, Interferon-λ1
- IL-6, Interleukin-6
- IL-6R, IL-6 Receptor
- IL-8, Interleukin-8
- IP-10, Interferon-inducible protein-10
- JAK/STAT, Janus kinase/signal transducers and activators of transcription
- JAK1/2, Janus kinase1/2
- LD50, 50% Lethal dose
- LH capsules, Forsythia honeysuckle (Lianhuaqingwen) capsules
- M protein, Membrane protein
- MAPK, Mitogen-activated protein kinase
- MCP-1, Monocyte chemotactic protein 1
- MDCK, Madin-darby canine kidney
- MEK, Mitogen-activated protein kinase kinase
- MERS, Middle east respiratory syndrome
- MIP-1β, Macrophage Inflammatory Protein-1β
- MLD50, 50% Minimum lethal dose
- MOF, Multifunctional organ damage
- MOI, Multiplicity of infection
- MTT, Methyl Thiazolyl Tetrazolium
- NF-kB, Nuclear transcription factor kappa-B
- NHC, National Health Commission
- ORFs, Open reading frames
- PBS, Phosphate buffered saline
- PHN, Phillyrin
- PI3K, Phosphoinositide 3-kinases
- PKA/p-CREB, Protein kinase A /phosphorylated cAMP response element-binding protein
- PKB, Akt, Protein kinase B
- PLpro, Papain-like proteases
- PRC, People's Republic of China
- QC, Quality control
- RANTES, Regulated on activation normal T cell expressed and secreted
- RSV, Respiratory syncytial virus
- RT-PCR, Reverse transcription PCR
- Ras, Ras GTPase
- SARS-CoV-2
- TCID50, 50% Tissue culture infective dose
- TD0, Non-toxic Dose
- TD50, Half-toxic dose
- Vero E6, African Green Monkey Kidney Epithelial-6
- gp-130, Glycoprotein 130
- mIL-6R, Membrane-bound form IL-6 Receptor
- mTOR, Mammalian target of rapamycin
- nsps, Non-structural proteins
- qPCR, Quantitative PCR
Collapse
Affiliation(s)
- Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuzhi Liu
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Guaiping Qiao
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Juan Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xingke Ju
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minyi Jia
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| | - Pengcheng Yu
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Han Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
10
|
Wang D, Wang XH, Yu X, Cao F, Cai X, Chen P, Li M, Feng Y, Li H, Wang X. Pharmacokinetics of Anthraquinones from Medicinal Plants. Front Pharmacol 2021; 12:638993. [PMID: 33935728 PMCID: PMC8082241 DOI: 10.3389/fphar.2021.638993] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/03/2021] [Indexed: 12/23/2022] Open
Abstract
Anthraquinones are bioactive natural products, some of which are active components in medicinal medicines, especially Chinese medicines. These compounds exert actions including purgation, anti-inflammation, immunoregulation, antihyperlipidemia, and anticancer effects. This study aimed to review the pharmacokinetics (PKs) of anthraquinones, which are importantly associated with their pharmacological and toxicological effects. Anthraquinones are absorbed mainly in intestines. The absorption rates of free anthraquinones are faster than those of their conjugated glycosides because of the higher liposolubility. A fluctuation in blood concentration and two absorption peaks of anthraquinones may result from the hepato-intestinal circulation, reabsorption, and transformation. Anthraquinones are widely distributed throughout the body, mainly in blood-flow rich organs and tissues, such as blood, intestines, stomach, liver, lung, kidney, and fat. The metabolic pathways of anthraquinones are hydrolysis, glycuronidation, sulfation, methylation/demethylation, hydroxylation/dehydroxylation, oxidation/reduction (hydrogenation), acetylation and esterification by intestinal flora and liver metabolic enzymes, among which hydrolysis, glycuronidation and sulfation are dominant. Of note, anthraquinones can be transformed into each other. The main excretion routes for anthraquinones are the kidney, recta, and gallbladder. Conclusion: Some anthraquinones and their glycosides, such as aloe-emodin, chrysophanol, emodin, physcion, rhein and sennosides, have attracted the most PK research interest due to their more biological activities and/or detectability. Anthraquinones are mainly absorbed in the intestines and are mostly distributed in blood flow-rich tissues and organs. Transformation into another anthraquinone may increase the blood concentration of the latter, leading to an increased pharmacological and/or toxicological effect. Drug-drug interactions influencing PK may provide insights into drug compatibility theory to enhance or reduce pharmacological/toxicological effects in Chinese medicine formulae and deserve deep investigation.
Collapse
Affiliation(s)
- Dongpeng Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and School of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Xian-He Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiongjie Yu
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Fengjun Cao
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaojun Cai
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Ping Chen
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Minglun Li
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongliang Li
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and School of Pharmacy, Hubei University of Medicine, Shiyan, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Oncology Center, Renmin Hospital, Hubei University of Medicine, Shiyan, China.,Biomedical Research Institute, Hubei Key Laboratory of Wudang Local Chinese Medicine Research and School of Pharmacy, Hubei University of Medicine, Shiyan, China.,Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
11
|
Lin CH, Chiu HE, Wu SY, Tseng ST, Wu TC, Hung YC, Hsu CY, Chen HJ, Hsu SF, Kuo CE, Hu WL. Chinese Herbal Products for Non-Motor Symptoms of Parkinson's Disease in Taiwan: A Population-Based Study. Front Pharmacol 2021; 11:615657. [PMID: 33584294 PMCID: PMC7873047 DOI: 10.3389/fphar.2020.615657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
Objective: Combinations of Chinese herbal products (CHPs) are widely used for Parkinson’s disease (PD) in Taiwan. Thereby, we investigated the use of CHPs in patients with PD. Methods: This study was a population-based cohort study that analyzed the data of patients with PD from the National Health Insurance Research Database. A total of 9,117 patients were selected from a random sample of one million individuals included in this database. We used multiple logistic regression models to estimate the adjusted odds ratios of the demographic factors and analyzed the formula and single CHPs commonly used for PD. Results: Traditional Chinese medicine users were more commonly female, younger, of white-collar status, and residents of Central Taiwan. Chaihu-Jia-Longgu-Muli-Tang was the most commonly used formula, followed by Ma-Zi-Ren-Wan and then Shao-Yao-Gan-Cao-Tang. The most commonly used single herb was Uncaria tomentosa (Willd. ex Schult.) DC., followed by Gastrodia elata Blume and then Radix et Rhizoma Rhei (Rheum palmatum L., Rheum tanguticum Maxim. ex Balf., and Rheum officinale Baill.). Chaihu-Jia-Longgu-Muli-Tang and U. tomentosa (Willd. ex Schult.) DC. have shown neuroprotective effects in previous studies, and they have been used for managing non-motor symptoms of PD. Conclusion: Chaihu-Jia-Longgu-Muli-Tang and U. tomentosa (Willd. ex Schult.) DC. are the most commonly used CHPs for PD in Taiwan. Our results revealed the preferences in medication prescriptions for PD. Further studies are warranted to determine the effectiveness of these CHPs for ameliorating the various symptoms of PD, their adverse effects, and the mechanisms underlying their associated neuroprotective effects.
Collapse
Affiliation(s)
- Chien-Hung Lin
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsienhsueh Elley Chiu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Szu-Ying Wu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan.,Department of Sports Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shih-Ting Tseng
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tzu-Chan Wu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chiang Hung
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung, Taiwan
| | - Chung Y Hsu
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Hsuan-Ju Chen
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan.,College of Medicine, China Medical University, Taichung, Taiwan
| | - Sheng-Feng Hsu
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, Taiwan.,Department of Chinese Medicine, China Medical University Hospital, Taipei, Taiwan
| | - Chun-En Kuo
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Department of Nursing, Meiho University, Pingtung, Taiwan
| | - Wen-Long Hu
- Department of Chinese Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.,Kaohsiung Medical University College of Medicine, Kaohsiung, Taiwan.,Fooyin University College of Nursing, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Gao D, Wu SN, Zhang CE, Li RS, Liu ZJ, Xiao XH, Li L, Wang JB, Zhang L, Niu M. Exploration in the mechanism of rhubarb for the treatment of hyperviscosity syndrome based on network pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2020; 261:113078. [PMID: 32534118 DOI: 10.1016/j.jep.2020.113078] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/15/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperviscosity syndrome (HVS) is a major risk factor for thrombotic diseases. Rhubarb, well-known as a traditional Chinese medicine, exhibits multiple pharmacological activities, especially for promoting blood circulation to remove blood stasis (PBRB), which has been become a functional health food for decreasing the risk of cardiovascular diseases. However, due to the complexity of rhubarb components, it is still difficult to clarify the specific targets of effective substances in PBRB, and the pharmacodynamic mechanism needs to be further probed. MATERIALS AND METHODS The "compound-target-cell-disease" network analysis was initially used to predict potential targets and bioactive compounds. The effect of rhubarb for the treatment of HVS was examined by histopathology and biochemical assays based on the HVS rat model. RESULTS Through the "compound-target-cell-disease" network analysis, eight potential therapeutic targets were eventually screened out, and platelets were predicted as the main effector cells of rhubarb in PBRB. Among targets coagulation factor II (prothrombin, F2) and fibrinogen gamma chain (FGG) were closely related to platelets, and five compounds associated with F2 and FGG were predicted including emodin-8-O-beta-D-glucopyranoside (Emo), physcion-8-O-beta-D-glucopyranoside (Phy), procyanidin B-5,3'-O-gallate, torachrysone-8-O-beta-D-(6'-oxayl)-glucoside and epicatechin. Furthermore, thoracic aorta histopathology and biochemical examinations showed middle dose of rhubarb (0.42 g/kg/day) significantly ameliorated pathological changes, hemorheology parameters, as well as levels of representative biomarkers such as plasma P-selectin (P-sel) and thromboxane (TXB2) in platelet activation compared to HVS rat model, whose effects were comparable to the positive drug aspirin or even better. Finally, it was further validated F2 and FGG as the major effective targets of rhubarb as well as its two active ingredients Emo and Phy in PBRB. CONCLUSIONS This study may provide an innovative way and scientific information to further understand the main effective components of rhubarb and its mechanisms about targets of F2 and FGG in PBRB, especially the new therapeutic target FGG, which also provide a basis for establishing a quality control for rhubarb by bioassays that could correlate the clinical efficacy and its mechanism.
Collapse
Affiliation(s)
- Dan Gao
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China; Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Shan-Na Wu
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Cong-En Zhang
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Rui-Sheng Li
- Research Center for Clinical and Translational Medicine, Fifth Medical Center, General Hospital of Chinese PLA, Beijing, 100039, China.
| | - Zhen-Jie Liu
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Xiao-He Xiao
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Lin Li
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China.
| | - Jia-Bo Wang
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| | - Lan Zhang
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing Engineering Research Center for Nervous System Drugs, Beijing Institute for Brain Disorders, Key Laboratory for Neurodegenerative Diseases of Ministry of Education, Beijing, 100053, China.
| | - Ming Niu
- Department of China Military Institute of Chinese Materia, The Fifth Medical Centre, Chinese PLA (People's Liberation Army) General Hospital, Beijing, 100039, China.
| |
Collapse
|
13
|
Pharmacokinetic comparisons of major bioactive components after oral administration of raw and steamed rhubarb by UPLC-MS/MS. J Pharm Biomed Anal 2019; 171:43-51. [DOI: 10.1016/j.jpba.2019.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/17/2019] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
|
14
|
Lin L, Liu Y, Fu S, Qu C, Li H, Ni J. Inhibition of Mitochondrial Complex Function-The Hepatotoxicity Mechanism of Emodin Based on Quantitative Proteomic Analyses. Cells 2019; 8:cells8030263. [PMID: 30897821 PMCID: PMC6468815 DOI: 10.3390/cells8030263] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Emodin is the main component of traditional Chinese medicines including rhubarb, Polygonum multiflorum, and Polygonum cuspidatum. It has confirmed hepatotoxicity and may be the main causative agent of liver damage associated with the above-mentioned traditional Chinese medicines. However, current research does not explain the mechanism of emodin in hepatotoxicity. In this study, L02 cells were used as a model to study the mechanism of emodin-induced hepatocyte apoptosis using quantitative proteomics, and the results were verified by Western blot. A total of 662 differentially expressed proteins were discovered and analyzed using Gene Ontology (GO) and pathway enrichment analysis. The results show that the oxidative phosphorylation pathway is highly represented. Abnormalities in this pathway result in impaired mitochondrial function and represent mitochondrial damage. This result is consistent with mitochondria membrane potential measurements. Analysis of differentially expressed proteins revealed that emodin mainly affects oxidative phosphorylation pathways by inhibiting the function of the mitochondrial respiratory chain complexes; the mitochondrial respiratory chain complex activity assay result also confirmed that emodin could inhibit the activity of all mitochondrial complexes. This results in an increase in caspase-3, a decrease in mitochondrial membrane potential (MMP,) an increase in reactive oxygen species (ROS), and disorders in ATP synthesis, etc., eventually leading to mitochondrial damage and hepatocyte apoptosis in vitro.
Collapse
Affiliation(s)
- Longfei Lin
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Yuling Liu
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Sai Fu
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Changhai Qu
- School of Chinese material medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| | - Hui Li
- Institute Chinese materia medica china academy of Chinese medical sciences, Beijing 100700, China.
| | - Jian Ni
- School of Chinese material medica, Beijing University of Chinese Medicine, Beijing 100102, China.
| |
Collapse
|
15
|
Zhang Y, Ma H, Mai X, Xu Z, Yang Y, Wang H, Ouyang L, Liu S. Comparative Pharmacokinetics and Metabolic Profile of Rhein Following Oral Administration of Niuhuang Shang Qing Tablets, Rhubarb and Rhein in Rats. INT J PHARMACOL 2018. [DOI: 10.3923/ijp.2019.19.30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Xu Y, Wang Q, Yin Z, Gao X. On-line incubation and real-time detection by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry for rapidly analyzing metabolites of anthraquinones in rat liver microsomes. J Chromatogr A 2018; 1571:94-106. [DOI: 10.1016/j.chroma.2018.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/12/2018] [Accepted: 08/01/2018] [Indexed: 02/08/2023]
|
17
|
Wan Y, Sun SS, Fu HY, Xu YK, Liu Q, Yin JT, Wan B. Adjuvant rhubarb alleviates organs dysfunction and inhibits inflammation in heat stroke. Exp Ther Med 2018; 16:1493-1498. [PMID: 30116399 DOI: 10.3892/etm.2018.6327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 06/01/2018] [Indexed: 12/30/2022] Open
Abstract
The aim of the present study was to investigate the effects of adjuvant rhubarb on the recovery of patients with heat stroke. A total of 85 patients with heat stroke were randomly assigned to two treatment groups: One group receiving conventional treatment for heat stroke (conventional group) and one group receiving rhubarb supplement in addition to conventional treatment (rhubarb group). Liver and kidney function parameters, Acute Physiology and Chronic Health Evaluation (APACHE) II scores, plasma interleukin-6 (IL-6), procalcitonin (PCT), C-reactive protein (CRP) levels and venous white blood cell count (WBC) were analyzed. The length of stay in the intensive care units (ICUs) and hospital were recorded. Kaplan-Meier curves were drawn to determine the 30-day survival of the patients. The results indicated that rhubarb supplementation significantly reduced the WBC, as well as CRP, PCT and IL-6 levels at treatment days 3-5. Furthermore, rhubarb intake was observed to limit heat stroke-induced damage to liver and kidney function by decreasing the abnormally high levels of plasma aspartate aminotransferase, alanine aminotransferase and creatinine. Finally, patients in the rhubarb group had shorter ICU and hospital stays as well as a lower APACHE II score than those in the conventional group. However, no significant difference in the 30-day mortality rate was observed between the two groups. In conclusion, rhubarb intake provided a significant benefit for patients with heat stroke by inhibiting systemic inflammation and mitigating liver and kidney injury.
Collapse
Affiliation(s)
- Ying Wan
- Clinical Laboratory, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Shuang-Shuang Sun
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Hai-Yan Fu
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Yin-Kun Xu
- Intensive Care Unit, Zhenjiang No. 2 People's Hospital, Zhenjiang, Jiangsu 212000, P.R. China
| | - Qing Liu
- Department of Emergency, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Jiang-Tao Yin
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
| | - Bing Wan
- Intensive Care Unit, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China.,Department of Respiratory Medicine, The Affiliated Jiangning Hospital, Nanjing Medical University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
18
|
Xu Y, Mao X, Qin B, Peng Y, Zheng J. In vitro and in vivo metabolic activation of rhein and characterization of glutathione conjugates derived from rhein. Chem Biol Interact 2018; 283:1-9. [PMID: 29331654 DOI: 10.1016/j.cbi.2018.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/18/2017] [Accepted: 01/05/2018] [Indexed: 11/28/2022]
Abstract
Rhein (RH), 4,5-dihydroxyanthrauinone-2-carboxylic acid, is found in rhubarb (Dahuang), a traditional herbal medicine. RH has reportedly demonstrated multiple pharmacologic properties. Previous studies have also shown that RH induced hepatotoxicity, but the mechanisms of the adverse effect remain unknown. The major objective of the present study was to study the metabolic pathways of RH in order to identify potential reactive metabolites. One mono-hydroxylation metabolite (M1) was detected in urine and bile of rats given RH. M1 was also observed in rat and human liver microsomal incubations after exposure to RH. A total of three (GSH) conjugates (M2, M3 and M5) were detected in bile of rats treated with RH. We concluded that M2-M3 were directly derived from parent compound RH through spontaneous reaction with GSH. M5 was derived from M1 by reaction with GSH, which required cytoslic GSTs. M5 was further metabolized to the corresponding NAC conjugate (mercapturic acid) and was excreted in urine. P450 2C9 was mainly involved in the oxidation of RH.
Collapse
Affiliation(s)
- Yang Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Xu Mao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Boyang Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China.
| | - Jiang Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, PR China; State Key Laboratory of Functions and Applications of Medicinal Plants, Key Laboratory of Pharmaceutics of Guizhou Province and Guizhou Medical University, Guiyang, Guizhou 550004, PR China.
| |
Collapse
|
19
|
Ling X, Xiang Y, Tang Q, Chen F, Tan X. Comparative pharmacokinetics of eight major bioactive components in normal and bacterial diarrhea mini-pigs after oral administration of Gegen Qinlian Decoction. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1044-1045:132-141. [PMID: 28107700 DOI: 10.1016/j.jchromb.2017.01.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/12/2022]
Abstract
Healthy animals are most widely used in current pharmacokinetic(PK) studies. However, neglecting the effects of specific diseases on drug absorption results in the PK parameters of those experiments not accurately reflecting in vivo drug concentration changes during treatment. In this study, an E. coli infective diarrheal minipig model was applied to explore the pharmacokinetics of Gegen Qinlian decoction (GQD). A simple and rapid ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to determine the concentrations of the eight GQD components in minipig plasma after intragastric administration of GQD. The PK parameters of the main GQD components in normal and model minipigs after oral administration of GQD were compared. There were statistically significant differences (p<0.05) in the pharmacokinetic parameters of Puerarin, Wogonin and Daidzein involving the AUC0-t, Cmax, MRT(0-t), t1/2z between normal and model minipigs. Results showed that bacterial diarrhea had a great impact on the biological availability of the main ingredients in GQD. More importantly, the results obtained suggest that the bacterial diarrheal minipig model can be successfully applied in PK studies and may be used in other PK studies of drugs targeting intestinal disease.
Collapse
Affiliation(s)
- Xiao Ling
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Yuqiang Xiang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Qingfa Tang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Feilong Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China
| | - Xiaomei Tan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515, PR China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515, PR China.
| |
Collapse
|