1
|
Huang B, Ma H, Pagare PP, Li M, Mendez RE, Gillespie JC, Poklis JL, Halquist MS, Stevens DL, Dewey WL, Selley DE, Zhang Y. Discovery of 6α-Thiazolylcarboxamidonaltrexamine Derivative (NTZ) as a Potent and Central Nervous System Penetrant Opioid Receptor Modulator with Drug-like Properties for Potential Treatment of Opioid Use Disorder. ACS Pharmacol Transl Sci 2024; 7:4165-4182. [PMID: 39698260 PMCID: PMC11651181 DOI: 10.1021/acsptsci.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
The development of highly potent and selective μ opioid receptor (MOR) modulators with favorable drug-like properties has always been a focus in the opioid domain. Our previous efforts led to the discovery of a lead compound designated as NAT, a potent centrally acting MOR modulator. However, the fact that NAT precipitated considerable withdrawal effects at higher doses largely impaired its further development. In the light of the concept of activity cliff and CNS multiparameter optimization algorithm, a nitrogen atom was incorporated into the thiophene ring of NAT, aiming to preserve desirable pharmacological activities and CNS permeability while alleviating withdrawal symptoms. Among all 16 new analogs, compound 6 (NTZ) exhibited improved opioid receptor selectivity, enhanced in vivo antagonistic effect, and overall fewer withdrawal symptoms compared to NAT. Further assessment of several key drug-like properties suggested a favorable ADMET profile of NTZ. Taken together, NTZ shows promise as a potential lead to treat opioid use disorder.
Collapse
Affiliation(s)
- Boshi Huang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Hongguang Ma
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Piyusha P. Pagare
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Mengchu Li
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
| | - Rolando E. Mendez
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - James C. Gillespie
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Justin L. Poklis
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Matthew S. Halquist
- Department
of Pharmaceutics, Virginia Commonwealth
University, 410 North
12th Street, Richmond, Virginia23298, United States
| | - David L. Stevens
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - William L. Dewey
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Dana E. Selley
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
| | - Yan Zhang
- Department
of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E Leigh Street, Richmond, Virginia23298, United States
- Department
of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, 410 North 12th Street, Richmond, Virginia23298, United States
- Institute
for Drug and Alcohol Studies, 203 East Cary Street, Richmond, Virginia23298-0059, United States
| |
Collapse
|
2
|
Difelikefalin, a peripherally restricted KOR (kappa opioid receptor) agonist, produces diuresis through a central KOR pathway. Pharmacol Res 2022; 185:106470. [PMID: 36202183 DOI: 10.1016/j.phrs.2022.106470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/08/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
Abstract
Difelikefalin is a peripherally restricted kappa opioid receptor (KOR) agonist that was recently approved by the FDA to treat pruritis in dialysis patients. Here, we investigated the cardiovascular and renal responses to difelikefalin, and using the KOR antagonist norbinaltorphimine (norBNI), examined whether any difelikefalin-induced changes in the renal excretion of water and/or electrolytes were mediated through a central or peripheral KOR pathway. The effects of norBNI pretreatment on nalfurafine, a KOR agonist that crosses the blood-brain barrier, were also examined. We hypothesized that difelikefalin would alter urine output differently than nalfurafine, given that KOR agonists produce diuresis via activating central KORs to inhibit vasopressin release. Following catheterization, conscious Sprague-Dawley rats were infused i.v. with isotonic saline and pretreated with norBNI centrally via an intracerebroventricular (ICV) cannula or peripherally via an intravenous catheter. After stabilization, difelikefalin or nalfurafine was administered i.v. and urine output, heart rate and mean arterial pressure (MAP) were recorded for 90 min. Difelikefalin produced a significant increase in urine output, and significant decrease in urinary sodium and potassium excretion, urine osmolality, and MAP. ICV norBNI pretreatment markedly attenuated the increase in urine output caused by difelikefalin and nalfurafine but did not inhibit the electrolyte effects. However, IV norBNI pretreatment prevented all responses to difelikefalin and nalfurafine. Together, these findings demonstrate that difelikefalin and nalfurafine utilize central KOR pathways to elicit diuresis and a decrease in MAP but enhance renal tubular electrolyte reabsorption through a peripheral KOR pathway, providing important insight into two clinically useful KOR agonists.
Collapse
|
3
|
Cao D, Huang P, Chiu YT, Chen C, Wang H, Li M, Zheng Y, Ehlert FJ, Zhang Y, Liu-Chen LY. Comparison of Pharmacological Properties between the Kappa Opioid Receptor Agonist Nalfurafine and 42B, Its 3-Dehydroxy Analogue: Disconnect between in Vitro Agonist Bias and in Vivo Pharmacological Effects. ACS Chem Neurosci 2020; 11:3036-3050. [PMID: 32897695 DOI: 10.1021/acschemneuro.0c00407] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Nalfurafine, a moderately selective kappa opioid receptor (KOR) agonist, is used in Japan for treatment of itch without causing dysphoria or psychotomimesis. Here we characterized the pharmacology of compound 42B, a 3-dehydroxy analogue of nalfurafine and compared with that of nalfurafine. Nalfurafine and 42B acted as full KOR agonists and partial μ opioid receptor (MOR) agonists, but 42B showed much lower potency for both receptors and lower KOR/MOR selectivity, different from previous reports. Molecular modeling revealed that water-mediated hydrogen-bond formation between 3-OH of nalfurafine and KOR accounted for its higher KOR potency than 42B. The higher potency of both at KOR over MOR may be due to hydrogen-bond formation between nonconserved Y7.35 of KOR and their carbonyl groups. Both showed modest G protein signaling biases. In mice, like nalfurafine, 42B produced antinociceptive and antiscratch effects and did not cause conditioned place aversion (CPA) in the effective dose ranges. Unlike nalfurafine, 42B caused motor incoordination and hypolocomotion. As both agonists showed G protein biases, yet produced different effects on locomotor activity and motor incoordination, the findings and those in the literature suggest caution in correlating in vitro biochemical data with in vivo behavior effects. The factors contributing to the disconnect, including pharmacodynamic and pharmacokinetic issues, are discussed. In addition, our results suggest that among the KOR-induced adverse behaviors, CPA can be separated from motor incoordination and hypolocomotion.
Collapse
Affiliation(s)
- Danni Cao
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
- Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Peng Huang
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Yi-Ting Chiu
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Chongguang Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| | - Huiqun Wang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Mengchu Li
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Yi Zheng
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Frederick J. Ehlert
- Department of Pharmaceutical Sciences, Center of Health Sciences, University of California, Irvine, California 92697, United States
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| | - Lee-Yuan Liu-Chen
- Center for Substance Abuse Research, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania 19140, United States
| |
Collapse
|
4
|
Miyamoto Y, Oh T, Aihara E, Ando A. Clinical Profiles of Nalfurafine Hydrochloride for the Treatment of Pruritus Patients. Handb Exp Pharmacol 2020; 271:455-472. [PMID: 33201326 DOI: 10.1007/164_2020_400] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Nalfurafine hydrochloride is a selective kappa-opioid agonist that has antipruritic effects. Here we describe the clinical trials for treatment of uremic pruritus in dialysis patients and on hepatic pruritus in patients with chronic liver disease. Among cytochrome P-450 (CYP) isoforms in humans, CYP3A4 is the major isoform involved in metabolic decyclopropylmethylation of nalfurafine hydrochloride. Nalfurafine hydrochloride was found to be a substrate for P-glycoprotein (P-gp), but had no inhibitory effects on P-gp-mediated transport. The efficacy of oral nalfurafine hydrochloride at 2.5 and 5 μg for refractory pruritus in hemodialysis patients was observed within the first 7 days of treatment, and the effects persisted for the 52-week treatment period. Nalfurafine hydrochloride is also effective in the treatment of conventional refractory pruritus in peritoneal dialysis patients. Moreover, nalfurafine hydrochloride at 2.5 and 5 μg is effective for the treatment of refractory pruritus in chronic liver disease patients within the first 7 days of drug administration. In all the clinical trials, most adverse drug reactions (ADRs) were mild and resolved quickly and there was no clinical safety problem. Following 52 weeks of treatment, hemodialysis patients did not develop physical or psychological dependence, indicating no addiction risks. In summary, nalfurafine hydrochloride administered orally at doses of 2.5 and 5 μg was safe and effective for treatment of refractory pruritus in patients undergoing hemodialysis or peritoneal dialysis and in chronic liver disease patients.
Collapse
Affiliation(s)
- Yohei Miyamoto
- Clinical Research Department, Toray Industries, Inc., Tokyo, Japan.
| | - Takanori Oh
- Clinical Research Department, Toray Industries, Inc., Tokyo, Japan
| | - Eiji Aihara
- Clinical Research Department, Toray Industries, Inc., Tokyo, Japan
| | - Akihiro Ando
- Clinical Research Department, Toray Industries, Inc., Tokyo, Japan
| |
Collapse
|
5
|
Zhou Y, Kreek MJ. Combination of Clinically Utilized Kappa-Opioid Receptor Agonist Nalfurafine With Low-Dose Naltrexone Reduces Excessive Alcohol Drinking in Male and Female Mice. Alcohol Clin Exp Res 2019; 43:1077-1090. [PMID: 30908671 DOI: 10.1111/acer.14033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nalfurafine is the first clinically approved kappa-opioid receptor (KOP-r) agonist as an antipruritus drug with few side effects in humans (e.g., sedation, depression, and dysphoria). No study, however, has been done using nalfurafine on alcohol drinking in rodents or humans. METHODS We investigated whether nalfurafine alone or in combination with mu-opioid receptor (MOP-r) antagonist naltrexone changed excessive alcohol drinking in male and female C57BL/6J (B6) mice subjected to a chronic intermittent-access drinking paradigm (2-bottle choice, 24-hour access every other day) for 3 weeks. Neuronal proopiomelanocortin enhancer (nPE) knockout mice with brain-specific deficiency of beta-endorphin (endogenous ligand of MOP-r) were used as a genetic control for the naltrexone effects. RESULTS Single administration of nalfurafine decreased alcohol intake and preference in both male and female B6 mice in a dose-dependent manner. Pretreatment with nor-BNI (a selective KOP-r antagonist) blocked the nalfurafine effect on alcohol drinking, indicating a KOP-r-mediated mechanism. Pharmacological effects of a 5-dosing nalfurafine regimen were further evaluated: The repeated nalfurafine administrations decreased alcohol consumption without showing any blunted effects, suggesting nalfurafine did not develop a tolerance after the multidosing regimen tested. Nalfurafine did not produce any sedation (spontaneous locomotor activity), anhedonia-like (sucrose preference test), anxiety-like (elevated plus maze test), or dysphoria-like (conditioned place aversion test) behaviors, suggesting that nalfurafine had few side effects. Investigating synergistic effects between low-dose naltrexone and nalfurafine, we found that single combinations of nalfurafine and naltrexone, at doses lower than individual effective dose, profoundly decreased excessive alcohol intake in both sexes. The effect of nalfurafine on decreasing alcohol consumption was confirmed in nPE-/- mice, suggesting independent mechanisms by which nalfurafine and naltrexone reduced alcohol drinking. CONCLUSION The clinically utilized KOP-r agonist nalfurafine in combination with low-dose naltrexone has potential in alcoholism treatment.
Collapse
Affiliation(s)
- Yan Zhou
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| | - Mary Jeanne Kreek
- Laboratory of the Biology of Addictive Diseases, The Rockefeller University, New York, New York
| |
Collapse
|
6
|
Abstract
This paper is the thirty-ninth consecutive installment of the annual review of research concerning the endogenous opioid system. It summarizes papers published during 2016 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides, opioid receptors, opioid agonists and opioid antagonists. The particular topics that continue to be covered include the molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors related to behavior, and the roles of these opioid peptides and receptors in pain and analgesia, stress and social status, tolerance and dependence, learning and memory, eating and drinking, drug abuse and alcohol, sexual activity and hormones, pregnancy, development and endocrinology, mental illness and mood, seizures and neurologic disorders, electrical-related activity and neurophysiology, general activity and locomotion, gastrointestinal, renal and hepatic functions, cardiovascular responses, respiration and thermoregulation, and immunological responses.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and CUNY Neuroscience Collaborative, Queens College, City University of New York, Flushing, NY 11367, United States.
| |
Collapse
|