1
|
Mao J, Zeng F, Qin W, Hu M, Xu L, Cheng F, Zhong M, Zhang Y. A joint population pharmacokinetic model to assess the high variability of whole-blood and intracellular tacrolimus in early adult renal transplant recipients. Int Immunopharmacol 2024; 137:112535. [PMID: 38908078 DOI: 10.1016/j.intimp.2024.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Tacrolimus (TAC) has high pharmacokinetic (PK) variability during the early transplantation period. The relationships between whole-blood and intracellular TAC concentrations and clinical outcomes remain controversial. This study identifies the factors affecting the PK variability of TAC and characterizes the relationships between whole-blood and intracellular TAC concentrations. Data regarding whole-blood TAC concentrations of 1,787 samples from 215 renal transplant recipients (<90 days postoperative) across two centers and intracellular TAC concentrations (648 samples) digitized from previous studies were analyzed using nonlinear mixed-effects modeling. The effects of potential covariates were screened, and the distribution of whole-blood to intracellular TAC concentration ratios (RWB:IC) was estimated. The final model was evaluated using bootstrap, goodness of fit, and prediction-corrected visual predictive checks. The optimal dosing regimens and target ranges for each type of immune cell subsets were determined using Monte Carlo simulations. A two-compartment model adequately described the data, and the estimated mean TAC CL/F was 23.6 L·h-1 (relative standard error: 11.5 %). The hematocrit level, CYP3A5*3 carrier status, co-administration with Wuzhi capsules, and tapering prednisolone dose may contribute to the high variability of TAC PK variability during the early post-transplant period. The estimated RWB:IC of all TAC concentrations in peripheral blood mononuclear cells (PBMCs) was 4940, and inter-center variability of PBMCs was observed. The simulated TAC target range in PBMCs was 20.2-85.9 pg·million cells-1. Inter-center variability in intracellular concentrations should be taken into account in further analyses. TAC dosage adjustments can be guided based on PK/PD variability and simulated intracellular concentrations.
Collapse
Affiliation(s)
- Junjun Mao
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Fang Zeng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Weiwei Qin
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Min Hu
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Luyang Xu
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China
| | - Fang Cheng
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai 200040, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Road, Wuhan, Hubei 430022, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 1277 Jie Fang Road, Wuhan, Hubei 430022, China.
| |
Collapse
|
2
|
Wang CB, Zhang YJ, Zhao MM, Zhao L. Dosage optimization of tacrolimus based on the glucocorticoid dose and pharmacogenetics in adult patients with systemic lupus erythematosus. Int Immunopharmacol 2023; 124:110866. [PMID: 37678026 DOI: 10.1016/j.intimp.2023.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND The purpose of the study was to develop a genotype-incorporated population pharmacokinetic (PPK) model of tacrolimus (TAC) in adults with systemic lupus erythematosus (SLE) to investigate the factors influencing TAC pharmacokinetics and to develop an individualized dosing regimen based on the model. In addition, a non-genotype-incorporated model was also established to assess its predictive performance compared to the genotype-incorporated model. METHODS A total of 365 trough concentrations from 133 adult SLE patients treated with TAC were collected to develop a genotype-incorporated PPK model and a non-genotype-incorporated PPK model of TAC using a nonlinear mixed-effects model (NONMEM). External validation of the two models was performed using data from an additional 29 patients. Goodness-of-fit diagnostic plots, bootstrap method, and normalized predictive distribution error test were used to validate the predictive performance and stability of the final models. The goodness-of-fit of the two final models was compared using the Akaike information criterion (AIC). The dosing regimen was optimized using Monte Carlo simulations based on the developed optimal model. RESULTS The typical value of the apparent clearance (CL/F) of TAC estimated in the final genotype-incorporated model was 14.3 L h-1 with inter-individual variability of 27.6%. CYP3A5 polymorphism and coadministered medication were significant factors affecting TAC-CL/F. CYP3A5 rs776746 GG genotype carriers had only 77.3% of the TAC-CL/F of AA or AG genotype carriers. Omeprazole reduced TAC-CL/F by 3.7 L h-1 when combined with TAC, while TAC-CL/F increased nonlinearly as glucocorticoid dose increased. Similar findings were demonstrated in the non-genotype-incorporated PPK model. Comparing these two models, the genotype-incorporated PPK model was superior to the non-genotype-incorporated PPK model (AIC = 643.19 vs. 657.425). Monte Carlo simulation based on the genotype-incorporated PPK model indicated that CYP3A5 rs776746 AA or AG genotype carriers required a 1/2-1 fold higher dose of TAC than GG genotype carriers to achieve the target concentration. And as the daily dose of prednisone increases, the dose of TAC required to reach the target concentration increases appropriately. CONCLUSIONS We developed the first pharmacogenetic-based PPK model of TAC in adult patients with SLE and proposed a dosing regimen based on glucocorticoid dose and CYP3A5 genotype according to the model, which could facilitate individualized dosing for TAC.
Collapse
Affiliation(s)
- Cheng-Bin Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yu-Jia Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ming-Ming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Chen D, Yao Q, Chen W, Yin J, Hou S, Tian X, Zhao M, Zhang H, Yang L, Zhou T, Jin P. Population PK/PD model of tacrolimus for exploring the relationship between accumulated exposure and quantitative scores in myasthenia gravis patients. CPT Pharmacometrics Syst Pharmacol 2023; 12:963-976. [PMID: 37060188 PMCID: PMC10349186 DOI: 10.1002/psp4.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/16/2023] Open
Abstract
Tacrolimus is an important immunosuppressant used in the treatment of myasthenia gravis (MG). However, the population pharmacokinetic (PK) characteristics together with the exposure-response of tacrolimus in the treatment of MG remain largely unknown. In this study, we aimed to develop a population PK/pharmacodynamic (PK/PD) model of tacrolimus in patients with MG, in order to explore the relationships among tacrolimus dose, exposure, and its therapeutic efficacy. The genotype of CYP3A5, Osserman's classification, and status of thymus, as well as demographic characteristics and other biomarkers from laboratory testing were tested as covariate, and simulations were performed based on the final model. The population PK model was described using a one-compartment model with first-order elimination and fixed absorption parameters. CYP3A5 genotype significantly influenced the apparent clearance, and total protein (TP) influenced the apparent volume of distribution as covariates. The quantitative MG scores were characterized by the cumulated area under curve of tacrolimus in a maximum effect function. Osserman's classification was a significant covariate on the initial score of patients with MG. The simulations demonstrated that tacrolimus showed an unsatisfying effect possibly due to insufficient exposure in some patients with MG. A starting dose of 2 mg/d and even higher dose for patients with CYP3A5 *1/*1 and *1/*3 and lower TP level were required for the rapid action of tacrolimus. The population PK/PD model quantitatively described the relationships among tacrolimus dose, exposure, and therapeutic efficacy in patients with MG, which could provide reference for the optimization of tacrolimus dosing regimen at the individual patient level.
Collapse
Affiliation(s)
- Di Chen
- Department of PharmacyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| | - Qingyu Yao
- Department of PharmaceuticsSchool of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Wenjun Chen
- Department of PharmaceuticsSchool of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Jian Yin
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Shifang Hou
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Xiaoxin Tian
- Department of PharmacyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| | - Ming Zhao
- Department of PharmacyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| | - Hua Zhang
- Department of NeurologyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical SciencesBeijingChina
| | - Liping Yang
- Department of PharmacyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| | - Tianyan Zhou
- Department of PharmaceuticsSchool of Pharmaceutical SciencesPeking UniversityBeijingChina
| | - Pengfei Jin
- Department of PharmacyBeijing HospitalNational Center of GerontologyInstitute of Geriatric MedicineChinese Academy of Medical ScienceBeijing Key Laboratory of Assessment of Clinical Drugs Risk and Individual Application (Beijing Hospital)BeijingChina
| |
Collapse
|
4
|
Wang CB, Zhang YJ, Zhao MM, Zhao LM. Population pharmacokinetic analyses of tacrolimus in non-transplant patients: a systematic review. Eur J Clin Pharmacol 2023:10.1007/s00228-023-03503-6. [PMID: 37261481 DOI: 10.1007/s00228-023-03503-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND AND OBJECTIVES Tacrolimus (TAC) has been increasingly used in patients with non-transplant settings. Because of its large between-subject variability, several population pharmacokinetic (PPK) studies have been performed to facilitate individualized therapy. This review summarized published PPK models of TAC in non-transplant patients, aiming to clarify factors affecting PKs of TAC and identify the knowledge gap that may require further research. METHODS The PubMed, Embase databases, and Cochrane Library, as well as related references, were searched from the time of inception of the databases to February 2023, to identify TAC population pharmacokinetic studies modeled in non-transplant patients using a non-linear mixed-effects modeling approach. RESULTS Sixteen studies, all from Asian countries (China and Korea), were included in this study. Of these studies, eleven and four were carried out in pediatric and adult patients, respectively. One-compartment models were the commonly used structural models for TAC. The apparent clearance (CL/F) of TAC ranged from 2.05 to 30.9 L·h-1 (median of 14.9 L·h-1). Coadministered medication, genetic factors, and weight were the most common covariates affecting TAC-CL/F, and variability in the apparent volume of distribution (V/F) was largely explained by weight. Coadministration with Wuzhi capsules reduced CL/F by about 19 to 43%. For patients with CYP3A5*1*1 and *1*3 genotypes, the CL/F was 39-149% higher CL/F than patients with CYP3A5*1*1. CONCLUSION The optimal TAC dosage should be adjusted based on the patient's co-administration, body weight, and genetic information (especially CYP3A5 genotype). Further studies are needed to assess the generalizability of the published models to other ethnic groups. Moreover, external validation should be frequently performed to improve the clinical practicality of the models.
Collapse
Affiliation(s)
- Cheng-Bin Wang
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning Province, People's Republic of China
| | - Yu-Jia Zhang
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning Province, People's Republic of China
| | - Ming-Ming Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning Province, People's Republic of China
| | - Li-Mei Zhao
- Department of Pharmacy, Shengjing Hospital of China Medical University, 36 Sanhao Street, Shenyang, 110004, Liaoning Province, People's Republic of China.
| |
Collapse
|
5
|
Miedziaszczyk M, Bajon A, Jakielska E, Primke M, Sikora J, Skowrońska D, Idasiak-Piechocka I. Controversial Interactions of Tacrolimus with Dietary Supplements, Herbs and Food. Pharmaceutics 2022; 14:pharmaceutics14102154. [PMID: 36297591 PMCID: PMC9611668 DOI: 10.3390/pharmaceutics14102154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 12/05/2022] Open
Abstract
Tacrolimus is an immunosuppressive calcineurin inhibitor used to prevent rejection in allogeneic organ transplant recipients, such as kidney, liver, heart or lung. It is metabolized in the liver, involving the cytochrome P450 (CYP3A4) isoform CYP3A4, and is characterized by a narrow therapeutic window, dose-dependent toxicity and high inter-individual and intra-individual variability. In view of the abovementioned facts, the aim of the study is to present selected interactions between tacrolimus and the commonly used dietary supplements, herbs and food. The review was based on the available scientific literature found in the PubMed, Scopus and Cochrane databases. An increase in the serum concentration of tacrolimus can be caused by CYP3A4 inhibitors, such as grapefruit, pomelo, clementine, pomegranate, ginger and turmeric, revealing the side effects of this drug, particularly nephrotoxicity. In contrast, CYP3A4 inducers, such as St. John’s Wort, may result in a lack of therapeutic effect by reducing the drug concentration. Additionally, the use of Panax ginseng, green tea, Schisandra sphenanthera and melatonin in patients receiving tacrolimus is highly controversial. Therefore, since alternative medicine constitutes an attractive treatment option for patients, modern healthcare should emphasize the potential interactions between herbal medicines and synthetic drugs. In fact, each drug or herbal supplement should be reported by the patient to the physician (concordance) if it is taken in the course of immunosuppressive therapy, since it may affect the pharmacokinetic and pharmacodynamic parameters of other preparations.
Collapse
Affiliation(s)
- Miłosz Miedziaszczyk
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
- Correspondence:
| | - Aleksander Bajon
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Ewelina Jakielska
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Marta Primke
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Jędrzej Sikora
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Dagmara Skowrońska
- Student’s Scientific Section of Nephrology and Clinical Transplantology, 61-701 Poznan, Poland
| | - Ilona Idasiak-Piechocka
- Department of Nephrology, Transplantology and Internal Medicine, Poznan University of Medical Sciences, 60-355 Poznan, Poland
| |
Collapse
|
6
|
Population Pharmacokinetic Evaluation with External Validation of Tacrolimus in Chinese Primary Nephrotic Syndrome Patients. Pharm Res 2022; 39:1907-1920. [PMID: 35650450 DOI: 10.1007/s11095-022-03273-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/22/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The generalizability of numerous tacrolimus population pharmacokinetic (popPK) models constructed to promote optimal tacrolimus dosing in patients with primary nephrotic syndrome (PNS) is unclear. This study aimed to evaluate the predictive performance of published tacrolimus popPK models for PNS patients with an external data set. METHODS We prospectively collected 223 concentrations from 50 Chinese adult patients with PNS who were undergoing tacrolimus treatment. Data on published tacrolimus popPK models for adults and children with PNS were extracted from the literature. Model predictability was evaluated with prediction-based and simulation-based diagnostics and Bayesian forecasting. RESULTS In prediction-based evaluation, none of the 11 identified published popPK models of tacrolimus had met a predefined criteria of a mean prediction error ≤ ± 20%, and the prediction error within ± 30% of the identified models didn't exceed 50%. Simulation-based diagnostics also indicated unsatisfactory predictability. Bayesian forecasting demonstrated amelioration in the model predictability with the inclusion of 2-3 prior observations. Moreover, the predictive performance of nonlinear models was not better than that of one-compartment models. CONCLUSIONS The prediction of tacrolimus concentrations for patients with PNS remains challenging; published models are not applicable for extrapolation to other hospitals. Bayesian forecasting significantly improved model predictability and thereby helped to individualize tacrolimus dosing.
Collapse
|
7
|
Fan Z, Zheng D, Wen X, Shen F, Lei L, Su S, Zhang S, Liu Q, Zhang X, Lu Y, Di L, Shen XM, Da Y. CYP3A5*3 polymorphism and age affect tacrolimus blood trough concentration in myasthenia gravis patients. J Neuroimmunol 2021; 355:577571. [PMID: 33866281 DOI: 10.1016/j.jneuroim.2021.577571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 04/04/2021] [Accepted: 04/05/2021] [Indexed: 12/12/2022]
Abstract
The study aims to identify clinical factors affecting tacrolimus blood trough concentration (C0) in myasthenia gravis (MG) patients and to optimize the initial dose of tacrolimus in MG treatment. A total of 103 MG patients participated in this study, and their clinical factors, medication regimens, C0 values and CYP3A5*3 polymorphisms were collected in detail. We used a linear mixed model to analyze the effect of multiple factors on the dosage-weighted C0 (C0:D) and performed subgroup analyses to investigate the consistency of correlations between influencing factors and the C0:D ratios. Among all factors, CYP3A5*3 polymorphism and age showed a strong positive correlation with C0:D ratios. The C0:D ratios (ng/ml·mg-1) were higher for CYP3A5*3/*3 than for CYP3A5*1 (mean difference: 1.038, 95% confidence interval [CI]: 0.820-1.256, P-value <0.001), and for age in the range of 45-64 and ≥ 65 years than for age < 45 years (mean difference [95% CI] and P-value: 0.531[0.257-0.805] and P-value <0.001, 0.703 [0.377-1.029] and P-value <0.001, respectively). The C0:D ratios were not related to corticosteroid dosage, body weight, sex, hematocrit or the concomitant use of calcium channel blockers. The consistencies of the correlations between C0:D ratios and CYP3A5*3 polymorphism or age were confirmed by subgroup analyses. Thus, CYP3A5*3 polymorphism and age should be considered in optimizing the initial dose of tacrolimus for MG treatment.
Collapse
Affiliation(s)
- Zhirong Fan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Deqiang Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Faxiu Shen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lin Lei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shengyao Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Qing Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xueping Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA.
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Jing Y, Kong Y, Hou X, Liu H, Fu Q, Jiao Z, Peng H, Wei X. Population pharmacokinetic analysis and dosing guidelines for tacrolimus co-administration with Wuzhi capsule in Chinese renal transplant recipients. J Clin Pharm Ther 2021; 46:1117-1128. [PMID: 33768546 DOI: 10.1111/jcpt.13407] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/19/2021] [Accepted: 02/28/2021] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES Tacrolimus (TAC) is a first-line immunosuppressant which is used to prevent transplant rejection after solid organ transplantation (SOT). However, it has a narrow therapeutic index and high individual variability in pharmacokinetics (PK) and pharmacogenomics (PG). It has been reported that the metabolism of TAC can be affected by genetic factors, leading to different rates of metabolism in different subjects. Wuzhi Capsule (WZC) is a commonly used TAC-sparing agent in Chinese SOT to reduce TAC dosing due to its inhibitory effect on TAC metabolism by enzymes of the CYP3A subfamily. The aims of this study were to assess the effect of TAC+WZC co-administration and genetic polymorphism on the pharmacokinetics of TAC, by using a population pharmacokinetic (PPK) model. A dosing guideline for individualized TAC dosing is proposed based on the PPK study. METHODS The medical records of 165 adult patients with kidney transplant and their 824 TAC concentrations from two kidney transplantation centres were reviewed. The genotypes of four single-nucleotide polymorphisms (SNPs) in CYP3A5*3 and ABCB1 (rs1128503, rs2032582 and rs1045642) were tested by MASSARRAY. A PPK model was constructed by nonlinear mixed effect model (NONMEM® , Version 7.3). Finally, Monte Carlo simulations were employed to design initial dosing regimens based on the final model. RESULTS AND DISCUSSION The one-compartmental PPK model with first-order absorption and elimination of TAC was established in kidney transplant recipients (KTRs). CYP3A5*3 had significant impact on the PPK model. The haematocrit (HCT), postoperative time (POD) and CYP3A5*3 genotypes had a significant influence on TAC clearance when combined with WZC. The model was expressed as 23.4 × (HCT/0.3)-0.729 × 0.837 (combination with WZC) × e-0.0875(POD/12.6) ×1.18 (CYP3A5 expressors). For patients carrying the CYP3A5*3/*3 allele and with 30% HCT, the required TAC dose to achieve target trough concentrations of 10-15 ng/ml was 4 mg twice daily (q12h). For patients with the CYP3A5*3/*3 allele, the required dose was 3 mg TAC q12h when combined with WZC, and for patients with the CYP3A5*1/*1 or *1/*3 allele, the required dose was 4 mg of TAC q12h when co-administered with WZC. WHAT IS NEW AND CONCLUSION Wuzhi Capsule co-administration and CYP3A5 variants affect the PK of TAC Dosing guidelines are made based on the PPK model to allow individualized administration of TAC, especially when co-administered with WZC.
Collapse
Affiliation(s)
- Yan Jing
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Pharmacy, Medical School of Nanchang University, Nanchang, China
| | - Ying Kong
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiongjun Hou
- Department of Clinical Pharmacology, Jiangxi Provincial People's Hospital, Nanchang, China
| | - Hong Liu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Qun Fu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Pharmacy, Medical School of Nanchang University, Nanchang, China
| | - Zheng Jiao
- Department of Pharmacy, Shanghai Chest Hospital, Shanghai, China
| | - Hongwei Peng
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaohua Wei
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|