1
|
Le VN, Le VNB, Hoang XS, Le VD. Distribution of human papillomavirus among Vietnamese women with cervical cancer and unusual genetic variability of HPV16. Virology 2024; 594:110058. [PMID: 38520797 DOI: 10.1016/j.virol.2024.110058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/21/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
HPV16, with typical mutations that differ in geographical distribution and carcinogenic potency, has implications for cervical cancer screening, clinical diagnosis, and treatment. DNASTAR and MEGA were used to identify HPV16 variants and construct a phylogenetic tree. The most prevalent HPV genotypes were HPV16 (63.9%), HPV18 (26.7%), and other HPV (6.9%). HPV16 alterations were found in all E6, E7, and L1 genes, including 15 missense and 18 synonymous mutations. Missense mutations include R10G, Q14H, D25E, H78Y, L83V (E6); M29V, R35K, L78R, L95P (E7); H73Y, T176 N, N178T, T317P, T386S, L472F/I (L1). HPV16 sublineages include A1 (17.2%), A2 (0.9%), A3 (56.0%), A4 (19.0%), D1 (4.3%), and D3 (2.6%). Although several mutations in the oncoproteins E6, E7, and L1 have been detected, mutations known to be associated with cervical cancer risk, such as D25E and L83V, occur at a relatively low frequency. This suggests that HPV16 mutations are associated with cervical cancer through a complicated mechanism.
Collapse
Affiliation(s)
- Van Nam Le
- Departments of Infectious Disease, Military Hospital 103, 261 Phung Hung, Ha Dong, Hanoi, Viet Nam
| | - Van Nguyen Bang Le
- Luong the Vinh High School, 35 Dinh Nup, Trung Hoa, Cau Giay, Hanoi, Viet Nam
| | - Xuan Son Hoang
- Departments of Obstetrics and Gynecology, Cho Moi District General Hospital, Na Mo Village, Dong Tam Town, Cho Moi District, Bac Kan Province, Viet Nam
| | - Van Duyet Le
- Micobiology and Moclecular Biology Department, National Hospital for Tropical Diseases, 78 Giai Phong, Dong Da, Hanoi, Viet Nam.
| |
Collapse
|
2
|
Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, Ruslinda AR, Voon CH, Uda MNA, Uda MNA, Nadzirah S, Rejali Z, Afzan A, Zakaria II. Designing DNA probe from HPV 18 and 58 in the E6 region for sensing element in the development of genosensor-based gold nanoparticles. Biotechnol Appl Biochem 2021; 69:1966-1983. [PMID: 34554606 DOI: 10.1002/bab.2260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 09/19/2021] [Indexed: 11/09/2022]
Abstract
The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5' COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3', while 5'COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3' as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.
Collapse
Affiliation(s)
- F Nadhirah Jaapar
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N A Parmin
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - N Hamidah A Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Uda Hashim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Subash C B Gopinath
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia.,Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, Perlis, 02600, Malaysia
| | - F Syakirah Halim
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - A Rahim Ruslinda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - C H Voon
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N A Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - M N Afnan Uda
- Institute of Nano Electronic Engineering, Universiti Malaysia Perlis (UniMAP), Kangar, Perlis, 01000, Malaysia
| | - Sh Nadzirah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | - Zulida Rejali
- Department of Obstetrics and Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Amilia Afzan
- Department of Obstetrics and Gynaecology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Iffah Izzati Zakaria
- Malaysia Genome Institute (MGI), National Institute of Biotechnology (NIBM), Kajang, Selangor, Malaysia
| |
Collapse
|
3
|
Hosseini N, Shoja Z, Younesi S, Shafiei-Jandaghi NZ, Jalilvand S. Lineage analysis of human papillomavirus types 31 and 45 in cervical samples of Iranian women. J Med Virol 2021; 93:3857-3864. [PMID: 33368429 DOI: 10.1002/jmv.26748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/05/2020] [Accepted: 12/19/2020] [Indexed: 01/23/2023]
Abstract
Knowing the regional lineages/sublineages of human papillomavirus 31 (HPV 31) and 45 would be of great importance for further evolutionary, epidemiological, and biological analysis. In this regard, to characterize more common lineages and sublineages of HPV 31 and 45, the sequence variations of E6 gene were investigated in normal, premalignant, and malignant samples collected from the cervix in Iran. In total, 54 HPV 31- and 24 HPV 45-positive samples were analyzed by hemi-nested polymerase chain reaction (PCR) and nested-PCR, respectively. All PCR products were subjected to direct sequencing analysis. The results indicated that all three lineages A, B, and C were detected in HPV 31-positive samples; among which HPV 31 lineage A was dominant as it was found in 66.7% of all samples. HPV 31 lineages B and C were identified in 5.5% and 27.8% of samples, respectively. In HPV 45-infected samples, lineage B comprised of 62.5% of all samples and the remaining 37.5% belonged to lineage A. In conclusion, our findings showed that lineage A of HPV 31 was predominant in Iran. Lineage B of HPV 45 was also dominant among Iranian women. However, further studies with larger sample size should be addressed to estimate the pathogenicity risk of HPV 31 or HPV 45 lineages/sublineages in the development of cervical cancer among Iranian women.
Collapse
Affiliation(s)
- Neda Hosseini
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sarang Younesi
- Department of Clinical Laboratory Sciences, Nilou Medical Laboratory, Tehran, Iran
| | | | - Somayeh Jalilvand
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Oumeslakht L, Ababou M, Badaoui B, Qmichou Z. Worldwide genetic variations in high-risk human papillomaviruses capsid L1 gene and their impact on vaccine efficiency. Gene 2021; 782:145533. [PMID: 33636291 DOI: 10.1016/j.gene.2021.145533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/14/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Human papillomavirus is the most common sexually transmitted infection. It is associated with different cancers, mainly cervical cancer, which remains the fourth most frequent cancer among women worldwide; it is also related to anogenital (anus, vulvar, vagina, and penis) and oropharyngeal cancers. Vaccination against HPV infection is the major way of prevention, and it has demonstrated impressive efficacy in reducing cervical cancer incidence. Nowadays, all the licensed HPV recombinant vaccines were designed based on HPV major capsid L1 protein. However, some variations in the HPV L1 gene sequence may induce structural changes within the L1 protein, which may alter the affinity and interaction of monoclonal antibodies (MAbs) with L1 protein epitopes, and influence host immune response and recognition. Hence, the importance of accuracy in delineating epitopes relevant to vaccine design and defining genetic variations within antigenic regions in the L1 gene to predict its impact on prophylactic vaccine efficiency. The present review reports the sequence variations in HR-HPV L1 gene isolates from different countries around the world, which may help to understand the effect of HPV L1 gene variations on vaccine efficiency. METHODS Research studies were retrieved from PubMed, Google Scholar, Science direct, and the National Center for Biotechnology Information (NCBI) database. A total of 31 articles describing genetic variations within the major capsid L1 gene and conducted in Africa, Europe, America and Asia were found. Only 26 studies conducted on HPV16, 18, 31, 33, 58, 45 and 52 which are the targets of HPV prophylactic vaccines, and which reported genetic variations within the L1 gene, were selected and evaluated in this review. FINDINGS We found a total of 87, 49, 11, 7, 22, 3, and 17 non-synonymous single nucleotide polymorphisms (SNPs) within HPV16, HPV18, HPV31, HPV58, HPV45, and HPV52 L1 gene, respectively. Four mutations were frequently observed in HPV16 L1 sequences: T353P in the HI loop, H228D in the EF loop, T266A in the FG loop, and T292A in the FG loop. Two mutations in HPV58 L1 sequences: T375N in the HI loop and L150F in the DE loop. Three mutations in HPV33 L1 sequences: T56N in the BC loop, G133S in the DE loop, T266K in the FG loop. Other mutations were found in HPV18, HPV45, and HPV52 L1 sequences. Some were found in different countries, and others were specific to a given population. Furthermore, some variations were located on peptide binding epitopes and lead to a modification of epitopes, which may influence MAbs interactions. Others need further investigations due to the lack of studies. CONCLUSION This study investigated the major capsid L1 genetic diversity of HPV16, 18, 31, 33, 58, 45, and 52 circulating in different populations around the world. Further investigations should be conducted to confirm their effect on immunogenicity and prophylactic vaccine efficiency.
Collapse
Affiliation(s)
- Loubna Oumeslakht
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR, Rabat, Morocco; Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, Morocco
| | - Mouna Ababou
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, Morocco
| | - Bouabid Badaoui
- Laboratory of Biodiversity, Ecology and Genome, Department of Biology, Faculty of Sciences Rabat, Mohammed V University, Rabat, Morocco
| | - Zineb Qmichou
- Medical Biotechnology Center, Moroccan Foundation for Advanced Science, Innovation and Research, MAScIR, Rabat, Morocco.
| |
Collapse
|
5
|
Rojas-Cruz A, Reyes-Bermúdez A. Phylogenetic analysis of Alphapapillomavirus based on L1, E6 and E7 regions suggests that carcinogenicity and tissue tropism have appeared multiple times during viral evolution. INFECTION GENETICS AND EVOLUTION 2018; 67:210-221. [PMID: 30458293 DOI: 10.1016/j.meegid.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 11/18/2022]
Abstract
Members of the Alphapapillomavirus genus are causative agents for cervix cancer and benign lesions in humans. These viruses are classified according to sequence similarities in their L1 region. Yet, viral carcinogenicity has been associated with variations in the proteins encoded by the E6 and E7 genes. In order to relate evolutionary history with origin of carcinogenicity, we performed phylogenetic reconstructions using both nucleotide and predicted amino acid sequences of the L1, E6 and E7 genes. Whilst phylogenetic analysis of L1 reconstructed genus evolutionary history, phylogenies based on E6 and E7 proteins support the idea that mutations at amino acids S/Tx [V/L] (E6) and LxCxE (E7) might be responsible for carcinogenic potential. These findings indicate that virulence within Alphapapillomavirus have appeared multiple times during evolution. Our results reveal that oncogenic potential is not a monophyletic clade-specific adaptation but might be the result of positive selection on random mutations occurring on proteins involved in host infection during viral diversification.
Collapse
Affiliation(s)
- Alexis Rojas-Cruz
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia
| | - Alejandro Reyes-Bermúdez
- Departamento de Biología, Facultad de Ciencias Básicas, Universidad de la Amazonia, Florencia 180002, Colombia.
| |
Collapse
|
6
|
Mashkour N, Maclaine A, Burgess GW, Ariel E. Discovery of an Australian Chelonia mydas papillomavirus via green turtle primary cell culture and qPCR. J Virol Methods 2018; 258:13-23. [PMID: 29630942 DOI: 10.1016/j.jviromet.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/04/2018] [Accepted: 04/04/2018] [Indexed: 11/29/2022]
Abstract
The number of reptilian viruses detected are continuously increasing due to improvements and developments of new diagnostic techniques. In this case we used primary cell culture and qPCR to describe the first Australian Chelonia mydas papillomavirus. Commercial chelonian cell lines are limited to one cell line from a terrestrial turtle (Terrapene Carolina). To establish primary cultures from green turtles (Chelonia mydas), turtle eggs were collected from Heron Island, Queensland, Australia. From day 35 of incubation at 29°, the embryos were harvested to establish primary cultures. The primary cell cultures were grown in Dulbecco's Modified Eagle Medium, 90% and foetal bovine serum, 10%. The cells became uniformly fibroblastic-shaped after 15 passages. The growth rate resembled that of cells originating from other cold-blooded animals and the average doubling time was ∼5 days from the 20th passage. Karyotyping and molecular analysis of mitochondrial DNA D-loop gene were carried out for cell authentication. The primary cell cultures were screened to exclude mycoplasma contamination. Two primary cell lineages were found to be susceptible to Bohle iridovirus. The primary cell cultures were used to screen samples from green turtles foraging along the East Coast of Queensland for the presence of viruses. Homogenates from eight skin tumour samples caused cytopathic effects and were confirmed by qPCR to be infected with papillomavirus.
Collapse
Affiliation(s)
- Narges Mashkour
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, QLD, Australia.
| | - Alicia Maclaine
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, QLD, Australia
| | - Graham W Burgess
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, QLD, Australia
| | - Ellen Ariel
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, 4811, QLD, Australia
| |
Collapse
|