1
|
Iqbal Z, Shafiq M, Briddon RW. Cotton leaf curl Multan betasatellite impaired ToLCNDV ability to maintain cotton leaf curl Multan alphasatellite. BRAZ J BIOL 2024; 84:e260922. [DOI: 10.1590/1519-6984.260922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 05/13/2022] [Indexed: 11/21/2022] Open
Abstract
Abstract Alphasatellites (family Alphasatellitidae) are circular, single-stranded (ss) DNA molecules of ~1350 nucleotide in size that have been characterized in both the Old and New Worlds. Alphasatellites have inherent ability to self-replicate, which is accomplished by a single protein, replication-associated protein (Rep). Although the precise function of alphasatellite is yet unknown, and these consider dispensable for infectivity, however, their Rep protein functions as a suppressor of host defence. While alphasatellites are most frequently associated with begomoviruses, particularly with monopartite than bipartite begomoviruses, they have recently been found associated with mastreviruses. The in planta maintenance of alphasatellites by helper geminivirus is still an enigma, with no available study on the topic. This study aimed to investigate whether a widely distributed bipartite begomovirus, tomato leaf curl New Delhi virus (ToLCNDV), can maintain cotton leaf curl Multan alphasatellite (CLCuMuA) in the presence or absence of cotton leaf curl Multan betasatellite (CLCuMuB). The findings of this study demonstrated that ToLCNDV or its DNA A could maintain CLCuMuA in Nicotiana benthamiana plants. However, the presence of CLCuMuB interferes with the maintenance of CLCuMuA, and mutations in the CP of ToLCNDV further reduces it. Our study highlighted that the maintenance of alphasatellites is impaired in the presence of a betasatellite by ToLCNDV. Further investigation is needed to unravel all the interactions between a helper virus and an alphasatellites.
Collapse
Affiliation(s)
- Z. Iqbal
- National Institute for Biotechnology and Genetic Engineering, Pakistan; King Faisal University, Saudi Arabia
| | - M. Shafiq
- National Institute for Biotechnology and Genetic Engineering, Pakistan; University of Sialkot, Pakistan
| | - R. W. Briddon
- National Institute for Biotechnology and Genetic Engineering, Pakistan
| |
Collapse
|
2
|
Rajabu CA, Dallas MM, Chiunga E, De León L, Ateka EM, Tairo F, Ndunguru J, Ascencio-Ibanez JT, Hanley-Bowdoin L. SEGS-1 a cassava genomic sequence increases the severity of African cassava mosaic virus infection in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1250105. [PMID: 37915512 PMCID: PMC10616593 DOI: 10.3389/fpls.2023.1250105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023]
Abstract
Cassava is a major crop in Sub-Saharan Africa, where it is grown primarily by smallholder farmers. Cassava production is constrained by Cassava mosaic disease (CMD), which is caused by a complex of cassava mosaic begomoviruses (CMBs). A previous study showed that SEGS-1 (sequences enhancing geminivirus symptoms), which occurs in the cassava genome and as episomes during viral infection, enhances CMD symptoms and breaks resistance in cassava. We report here that SEGS-1 also increases viral disease severity in Arabidopsis thaliana plants that are co-inoculated with African cassava mosaic virus (ACMV) and SEGS-1 sequences. Viral disease was also enhanced in Arabidopsis plants carrying a SEGS-1 transgene when inoculated with ACMV alone. Unlike cassava, no SEGS-1 episomal DNA was detected in the transgenic Arabidopsis plants during ACMV infection. Studies using Nicotiana tabacum suspension cells showed that co-transfection of SEGS-1 sequences with an ACMV replicon increases viral DNA accumulation in the absence of viral movement. Together, these results demonstrated that SEGS-1 can function in a heterologous host to increase disease severity. Moreover, SEGS-1 is active in a host genomic context, indicating that SEGS-1 episomes are not required for disease enhancement.
Collapse
Affiliation(s)
- Cyprian A. Rajabu
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Mary M. Dallas
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Evangelista Chiunga
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Leandro De León
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Elijah M. Ateka
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Fred Tairo
- Tanzania Agricultural Research Institute-Mikocheni, Dar Es Salaam, Tanzania
| | - Joseph Ndunguru
- Tanzania Agricultural Research Institute-Mikocheni, Dar Es Salaam, Tanzania
| | - Jose T. Ascencio-Ibanez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
3
|
Shakir S, Mubin M, Nahid N, Serfraz S, Qureshi MA, Lee TK, Liaqat I, Lee S, Nawaz-ul-Rehman MS. REPercussions: how geminiviruses recruit host factors for replication. Front Microbiol 2023; 14:1224221. [PMID: 37799604 PMCID: PMC10548238 DOI: 10.3389/fmicb.2023.1224221] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/21/2023] [Indexed: 10/07/2023] Open
Abstract
Circular single-stranded DNA viruses of the family Geminiviridae encode replication-associated protein (Rep), which is a multifunctional protein involved in virus DNA replication, transcription of virus genes, and suppression of host defense responses. Geminivirus genomes are replicated through the interaction between virus Rep and several host proteins. The Rep also interacts with itself and the virus replication enhancer protein (REn), which is another essential component of the geminivirus replicase complex that interacts with host DNA polymerases α and δ. Recent studies revealed the structural and functional complexities of geminivirus Rep, which is believed to have evolved from plasmids containing a signature domain (HUH) for single-stranded DNA binding with nuclease activity. The Rep coding sequence encompasses the entire coding sequence for AC4, which is intricately embedded within it, and performs several overlapping functions like Rep, supporting virus infection. This review investigated the structural and functional diversity of the geminivirus Rep.
Collapse
Affiliation(s)
- Sara Shakir
- Plant Genetics Lab, Gembloux Agro-Bio Tech, University of Liѐge, Gembloux, Belgium
| | - Muhammad Mubin
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Saad Serfraz
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| | - Muhammad Amir Qureshi
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Taek-Kyun Lee
- Risk Assessment Research Center, Korea Institute of Ocean Science and Technology, Geoje, Republic of Korea
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College University, Lahore, Pakistan
| | - Sukchan Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, Republic of Korea
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, Center for Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Iqbal Z, Shafiq M, Ali S, Mahmood MA, Siddiqui HA, Amin I, Briddon RW. qPCR Assay as a Tool for Examining Cotton Resistance to the Virus Complex Causing CLCuD: Yield Loss Inversely Correlates with Betasatellite, Not Virus, DNA Titer. PLANTS (BASEL, SWITZERLAND) 2023; 12:2645. [PMID: 37514259 PMCID: PMC10385359 DOI: 10.3390/plants12142645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Cotton leaf curl disease (CLCuD) is a significant constraint to the economies of Pakistan and India. The disease is caused by different begomoviruses (genus Begomovirus, family Geminiviridae) in association with a disease-specific betasatellite. However, another satellite-like molecule, alphasatellite, is occasionally found associated with this disease complex. A quantitative real-time PCR assay for the virus/satellite components causing CLCuD was used to investigate the performance of selected cotton varieties in the 2014-2015 National Coordinated Varietal Trials (NCVT) in Pakistan. The DNA levels of virus and satellites in cotton plants were determined for five cotton varieties across three geographic locations and compared with seed cotton yield (SCY) as a measure of the plant performance. The highest virus titer was detected in B-10 (0.972 ng·µg-1) from Vehari and the lowest in B-3 (0.006 ng·µg-1) from Faisalabad. Likewise, the highest alphasatellite titer was found in B-1 (0.055 ng·µg-1) from Vehari and the lowest in B-1 and B-2 (0.001 ng·µg-1) from Faisalabad. The highest betasatellite titer was found in B-23 (1.156 ng·µg-1) from Faisalabad and the lowest in B-12 (0.072 ng·µg-1) from Multan. Virus/satellite DNA levels, symptoms, and SCY were found to be highly variable between the varieties and between the locations. Nevertheless, statistical analysis of the results suggested that betasatellite DNA levels, rather than virus or alphasatellite DNA levels, were the important variable in plant performance, having an inverse relationship with SCY (-0.447). This quantitative assay will be useful in breeding programs for development of virus resistant plants and varietal trials, such as the NCVT, to select suitable varieties of cotton with mild (preferably no) symptoms and low (preferably no) virus/satellite. At present, no such molecular techniques are used in resistance breeding programs or varietal trials in Pakistan.
Collapse
Affiliation(s)
- Zafar Iqbal
- Central Laboratories, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Shafiq
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot P.O. Box 51340, Pakistan
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Sajed Ali
- Department of Biotechnology, University of Management and Technology, Sialkot Campus, Sialkot P.O. Box 51340, Pakistan
| | - Muhammad Arslan Mahmood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Hamid Anees Siddiqui
- Department of Biotechnology, University of Sialkot, Sialkot P.O. Box 51340, Pakistan
| | - Imran Amin
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad 38000, Pakistan
| |
Collapse
|
5
|
Mubin M, Shabbir A, Nahid N, Liaqat I, Hassan M, Aljarba NH, Qahtani AA, Fauquet CM, Ye J, Nawaz-ul-Rehman MS. Patterns of Genetic Diversity among Alphasatellites Infecting Gossypium Species. Pathogens 2022; 11:pathogens11070763. [PMID: 35890008 PMCID: PMC9319557 DOI: 10.3390/pathogens11070763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/30/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023] Open
Abstract
Alphasatellites are small single-stranded circular DNA molecules associated with geminiviruses and nanoviruses. In this study, a meta-analysis of known alphasatellites isolated from the genus Gossypium (cotton) over the last two decades was performed. The phylogenetic and pairwise sequence identity analysis suggested that cotton-infecting begomoviruses were associated with at least 12 different alphasatellites globally. Three out of twelve alphasatellite were associated with cotton leaf curl geminiviruses but were not isolated from cotton plants. The cotton leaf curl Multan alphasatellite, which was initially isolated from cotton, has now been reported in several plant species, including monocot plants such as sugarcane. Our recombination analysis suggested that four alphasatellites, namely cotton leaf curl Lucknow alphasatellites, cotton leaf curl Multan alphasatellites, Ageratum yellow vein Indian alphasatellites and Ageratum enation alphasatellites, evolved through recombination. Additionally, high genetic variability was detected among the cotton-infecting alphasatellites at the genome level. The nucleotide substitution rate for the replication protein of alphasatellites (alpha-Rep) was estimated to be relatively high (~1.56 × 10−3). However, unlike other begomoviruses and satellites, the first codon position of alpha-Rep rapidly changed compared to the second and third codon positions. This study highlights the biodiversity and recombination of alphasatellites associated with the leaf curl diseases of cotton crops.
Collapse
Affiliation(s)
- Muhammad Mubin
- Virology Lab, CABB University of Agriculture, Jail Road, Faisalabad 38000, Pakistan; (M.M.); (A.S.); (M.H.)
| | - Arzoo Shabbir
- Virology Lab, CABB University of Agriculture, Jail Road, Faisalabad 38000, Pakistan; (M.M.); (A.S.); (M.H.)
| | - Nazia Nahid
- Department of Bioinformatics and Biotechnology, GC University Faisalabad, Faisalabad 38000, Pakistan;
| | - Iram Liaqat
- Microbiology Laboratory, Department of Zoology, GC University Lahore, Lahore 54000, Pakistan;
| | - Muhammad Hassan
- Virology Lab, CABB University of Agriculture, Jail Road, Faisalabad 38000, Pakistan; (M.M.); (A.S.); (M.H.)
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Ahmed Al Qahtani
- Department of Infection and Immunity, Research Center, King FaisaI Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia;
- Department of Microbiology and Immunology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | | | - Jian Ye
- Laboratory of Vector-Borne Diseases, State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Muhammad Shah Nawaz-ul-Rehman
- Virology Lab, CABB University of Agriculture, Jail Road, Faisalabad 38000, Pakistan; (M.M.); (A.S.); (M.H.)
- Correspondence:
| |
Collapse
|
6
|
Guyot V, Rajeswaran R, Chu HC, Karthikeyan C, Laboureau N, Galzi S, Mukwa LFT, Krupovic M, Kumar PL, Iskra-Caruana ML, Pooggin MM. A newly emerging alphasatellite affects banana bunchy top virus replication, transcription, siRNA production and transmission by aphids. PLoS Pathog 2022; 18:e1010448. [PMID: 35413079 PMCID: PMC9049520 DOI: 10.1371/journal.ppat.1010448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 04/28/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Banana bunchy top virus (BBTV) is a six-component ssDNA virus (genus Babuvirus, family Nanoviridae) transmitted by aphids, infecting monocots (mainly species in the family Musaceae) and likely originating from South-East Asia where it is frequently associated with self-replicating alphasatellites. Illumina sequencing analysis of banana aphids and leaf samples from Africa revealed an alphasatellite that should be classified in a new genus, phylogenetically related to alphasatellites of nanoviruses infecting dicots. Alphasatellite DNA was encapsidated by BBTV coat protein and accumulated at high levels in plants and aphids, thereby reducing helper virus loads, altering relative abundance (formula) of viral genome components and interfering with virus transmission by aphids. BBTV and alphasatellite clones infected dicot Nicotiana benthamiana, followed by recovery and symptomless persistence of alphasatellite, and BBTV replication protein (Rep), but not alphasatellite Rep, induced leaf chlorosis. Transcriptome sequencing revealed 21, 22 and 24 nucleotide small interfering (si)RNAs covering both strands of the entire viral genome, monodirectional Pol II transcription units of viral mRNAs and pervasive transcription of each component and alphasatellite in both directions, likely generating double-stranded precursors of viral siRNAs. Consistent with the latter hypothesis, viral DNA formulas with and without alphasatellite resembled viral siRNA formulas but not mRNA formulas. Alphasatellite decreased transcription efficiency of DNA-N encoding a putative aphid transmission factor and increased relative siRNA production rates from Rep- and movement protein-encoding components. Alphasatellite itself spawned the most abundant siRNAs and had the lowest mRNA transcription rate. Collectively, following African invasion, BBTV got associated with an alphasatellite likely originating from a dicot plant and interfering with BBTV replication and transmission. Molecular analysis of virus-infected banana plants revealed new features of viral DNA transcription and siRNA biogenesis, both affected by alphasatellite. Costs and benefits of alphasatellite association with helper viruses are discussed. Self-replicating alphasatellites are frequently associated with plant ssDNA viruses. Their origin and costs versus benefits for helper virus replication, antiviral defense evasion and transmission by insect vectors are poorly understood. Here we describe identification in Africa and in depth molecular and biological characterization of a newly emerging alphasatellite of BBTV, a multicomponent ssDNA babuvirus causing one of the most economically-important diseases of monocotyledonous bananas and plantains. Phylogenetically, this alphasatellite represents a novel genus and is more related to alphasatellites of nanoviruses infecting dicot hosts than to other BBTV alphasatellites previously identified only in Asia. Consistent with its hypothetical dicot origin, cloned alphasatellite and BBTV can establish systemic infection in a model dicot plant, followed by recovery and symptomless alphasatellite persistence. In banana plants, alphasatellite competes for the host replication and transcription machinery and accumulates at high levels, thereby reducing loads of the helper virus, modifying relative abundance of its components and interfering with its acquisition and transmission by aphids. On the other hand, plant antiviral defenses silence alphasatellite gene expression at both transcriptional and posttranscriptional levels, generating highly-abundant 21, 22 and 24 nucleotide small interfering RNAs, suggesting that alphasatellite may serve as a decoy protecting its helper virus from gene silencing.
Collapse
Affiliation(s)
- Valentin Guyot
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Rajendran Rajeswaran
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Huong Cam Chu
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Chockalingam Karthikeyan
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Nathalie Laboureau
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Serge Galzi
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
| | - Lyna F. T. Mukwa
- Faculté des Sciences Agronomiques, Université Pédagogique Nationale, Kinshasa, Democratic Republic of the Congo
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| | - P. Lava Kumar
- International Institute of Tropical Agriculture (IITA), Ibadan, Nigeria
| | - Marie-Line Iskra-Caruana
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
- CIRAD, DGD-RS, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University of Montpellier, INRAE, CIRAD, IRD, Institute Agro, Montpellier, France
- * E-mail:
| |
Collapse
|
7
|
Devendran R, Namgial T, Reddy KK, Kumar M, Zarreen F, Chakraborty S. Insights into the multifunctional roles of geminivirus-encoded proteins in pathogenesis. Arch Virol 2022; 167:307-326. [PMID: 35079902 DOI: 10.1007/s00705-021-05338-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/23/2021] [Indexed: 12/18/2022]
Abstract
Geminiviruses are a major threat to agriculture in tropical and subtropical regions of the world. Geminiviruses have small genome with limited coding capacity. Despite this limitation, these viruses have mastered hijacking the host cellular metabolism for their survival. To compensate for the small size of their genome, geminiviruses encode multifunctional proteins. In addition, geminiviruses associate themselves with satellite DNA molecules which also encode proteins that support the virus in establishing successful infection. Geminiviral proteins recruit multiple host factors, suppress the host defense, and manipulate host metabolism to establish infection. We have updated the knowledge accumulated about the proteins of geminiviruses and their satellites in the context of pathogenesis in a single review. We also discuss their interactions with host factors to provide a mechanistic understanding of the infection process.
Collapse
Affiliation(s)
- Ragunathan Devendran
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tsewang Namgial
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Kishore Kumar Reddy
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
8
|
Zhao L, Che X, Wang Z, Zhou X, Xie Y. Functional Characterization of Replication-Associated Proteins Encoded by Alphasatellites Identified in Yunnan Province, China. Viruses 2022; 14:222. [PMID: 35215816 PMCID: PMC8875141 DOI: 10.3390/v14020222] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 12/20/2022] Open
Abstract
Alphasatellites, which encode only a replication-associated protein (alpha-Rep), are frequently found to be non-essential satellite components associated with begomovirus/betasatellite complexes, and their presence can modulate disease symptoms and/or viral DNA accumulation during infection. Our previous study has shown that there are three types of alphasatellites associated with begomovirus/betasatellite complexes in Yunnan province in China and they encode three corresponding types of alpha-Rep proteins. However, the biological functions of alpha-Reps remain poorly understood. In this study, we investigated the biological functions of alpha-Reps in post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS) using 16c and 16-TGS transgenic Nicotiana benthamiana plants. Results showed that all the three types of alpha-Rep proteins were capable of suppressing the PTGS and reversing the TGS. Among them, the alpha-Rep of Y10DNA1 has the strongest PTGS and TGS suppressor activities. We also found that the alpha-Rep proteins were able to increase the accumulation of their helper virus during coinfection. These results suggest that the alpha-Reps may have a role in overcoming host defense, which provides a possible explanation for the selective advantage provided by the association of alphasatellites with begomovirus/betasatellite complexes.
Collapse
Affiliation(s)
- Liling Zhao
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.Z.); (X.C.); (X.Z.)
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming 650223, China
| | - Xuan Che
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.Z.); (X.C.); (X.Z.)
| | - Zhanqi Wang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Sciences, Huzhou University, Huzhou 313000, China;
| | - Xueping Zhou
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.Z.); (X.C.); (X.Z.)
- Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yan Xie
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (L.Z.); (X.C.); (X.Z.)
| |
Collapse
|
9
|
Kumar M, Zarreen F, Chakraborty S. Roles of two distinct alphasatellites modulating geminivirus pathogenesis. Virol J 2021; 18:249. [PMID: 34903259 PMCID: PMC8670188 DOI: 10.1186/s12985-021-01718-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alphasatellites are small coding DNA satellites frequently associated with a begomovirus/betasatellite complex, where they are known to modulate virulence and symptom development. Two distinct alphasatellites, namely, Cotton leaf curl Multan alphasatellite (CLCuMuA), and Gossypium darwinii symptomless alphasatellite (GDarSLA) associated with Cotton leaf curl Multan virus-India (CLCuMuV-IN) and Ludwigia leaf distortion betasatellite (LuLDB) were found to be associated with yellow mosaic disease of hollyhock (Alcea rosea) plants. In this study, we show that alphasatellites CLCuMuA and GDarSLA attenuate and delay symptom development in Nicotiana benthamiana. The presence of either alphasatellites reduce the accumulation of the helper virus CLCuMuV-IN. However, the levels of the associated betasatellite, LuLDB, remains unchanged. These results suggest that the alphasatellites could contribute to the host defence and understanding their role in disease development is important for developing resistance strategies. METHODS Tandem repeat constructs of two distinct alphasatellites, namely, CLCuMuA and GDarSLA associated with CLCuMuV-IN and LuLDB were generated. N. benthamiana plants were co-agroinoculated with CLCuMuV and its associated alphasatellites and betasatellite molecules and samples were collected at 7, 14 and 21 days post inoculation (dpi). The viral DNA molecules were quantified in N. benthamiana plants by qPCR. The sequences were analysed using the MEGA-X tool, and a phylogenetic tree was generated. Genetic diversity among the CLCuMuA and GDarSLA was analysed using the DnaSP tool. RESULTS We observed a reduction in symptom severity and accumulation of helper virus in the presence of two alphasatellites isolated from naturally infected hollyhock plants. However, no reduction in the accumulation of betasatellite was observed. The phylogenetic and genetic variability study revealed the evolutionary dynamics of these distinct alphasatellites , which could explain the role of hollyhock-associated alphasatellites in plants. CONCLUSIONS This study provides evidence that alphasatellites have a role in symptom modulation and suppress helper virus replication without any discernible effect on the replication of the associated betasatellite.
Collapse
Affiliation(s)
- Manish Kumar
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Fauzia Zarreen
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| | - Supriya Chakraborty
- Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110 067 India
| |
Collapse
|
10
|
Effects of an alphasatellite on life cycle of the nanovirus Faba bean necrotic yellows virus. J Virol 2021; 96:e0138821. [PMID: 34818072 DOI: 10.1128/jvi.01388-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Nanoviruses are plant viruses with a multipartite single-stranded DNA (ssDNA) genome. Alphasatellites are commonly associated with nanovirus infections, but their putative impact on their helper viruses is unknown. In this study, we investigated the role of subterranean clover stunt alphasatellite 1 (hereafter named SCSA 1) on various important traits of faba bean necrotic yellows virus (FBNYV) in its host plant Vicia faba and aphid vector Acyrthosiphon pisum, including disease symptoms, viral accumulation and transmission. The results indicate that SCSA 1 does not affect the symptom severity nor the overall FBNYV accumulation in V. faba, but changes the relative amounts of its different genomic segments. Moreover, the association of SCSA 1 with FBNYV increases the rate of plant-to-plant transmission by a process seemingly unrelated to simple increase of the viral accumulation in the vector. These results represent the first study on the impact of an alphasatellite on the biology of its helper nanovirus. They suggest that SCSA 1 may benefit FBNYV, but the genericity of this conclusion is discussed and questioned. Importance Alphasatellites are circular single stranded DNA molecules frequently found in association with natural isolates of nanoviruses and some geminiviruse, the two ssDNA plant infecting virus families. While the implications of alphasatellite presence in geminivirus infections are relatively well documented, comparable studies on alphasatellites associated with nanoviruses are not available. Here we confirm that subterranean clover stunt alphasatellite 1 affects different traits of its helper nanovirus, faba bean necrotic yellows virus, both in the host plant and aphid vector. We show that the frequencies of the virus segments change in the presence of alphasatellite, in both plant and vector. We also confirm that while within-plant virus load and symptom are not affected by alphasatellite, the presence of alphasatellite decreases within-aphid virus load, but significantly increases virus transmission rate, so may confer a possible evolutionary advantage for the helper virus.
Collapse
|
11
|
Palchoudhury S, Khare VK, Balram N, Bhattacharyya UK, Das S, Shukla P, Chakraborty P, Biswas KK. A multiplex polymerase chain reaction for the simultaneous detection of the virus and satellite components associated with cotton leaf curl begomovirus disease complex. J Virol Methods 2021; 300:114369. [PMID: 34813823 DOI: 10.1016/j.jviromet.2021.114369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 11/18/2022]
Abstract
Cotton leaf curl disease (CLCuD) is caused by a complex of several whiteflies (Bemisia tabaci Genn.)-transmitted begomovirus species, Cotton leaf curl Multan virus (CLCuMuV), Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Alabad virus (CLCuAlV) by individual of mixed infection, associated with Cotton leaf curl Multan betasatellite (CLCuMB) and several alphasatellites. The disease causes major economic losses in cotton in the Indian subcontinent. For monitoring of epidemiology and development of management strategies of CLCuD, a quick, sensitive and effective method capable of detecting all the begomovirus, betasatellite and alphasatellite components associated with CLCuD is required. With this objective, a multiplex polymerase chain reaction (mPCR) assay was developed for the simultaneous detection of these three viral components associated with CLCuD of cotton. Primers for each component were designed based on the retrieved reference sequences from the GenBank. Each pair of primers, designed for each of the respective component, was evaluated for its sensitivity and specificity in both the component-specific simplex polymerase chain reaction (sPCR) and mPCR assay. This report identified three viral component-specific pairs of primers which, in all combinations, amplified simultaneously the CP gene (780 nts) of the begomovirus, the βC1gene (375 nts) of the betasatellite and the Rep gene (452 nts) of the alphasatellite associated with CLCuD in the mPCR assays. The amplified products specific to each component produced by these assays were identified based on their amplicon sizes, and the identities of the viral components amplified were confirmed by cloning and sequencing the amplicons obtained in the mPCR. The mPCR assay was validated using naturally CLCuD-affected cotton plants of the fields. This assay will be useful for rapid detection of CLCuD-associated begomovirus, betasatellite and alphasatellite DNA in field samples, extensive resistance screening in resistance breeding programme, and also monitoring epidemiology for detection of virus and its components when symptoms are mild or absent in the plant.
Collapse
Affiliation(s)
- S Palchoudhury
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - V K Khare
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - N Balram
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - U K Bhattacharyya
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - S Das
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - P Shukla
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - P Chakraborty
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India
| | - K K Biswas
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
12
|
Natural occurrence of mesta yellow vein mosaic virus and DNA-satellites in ornamental sunflower ( Helianthus spp.) in Pakistan. Saudi J Biol Sci 2021; 28:6621-6630. [PMID: 34764778 PMCID: PMC8568841 DOI: 10.1016/j.sjbs.2021.07.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/23/2022] Open
Abstract
Weeds and ornamental plants serve as a reservoir for geminiviruses and contribute to their dissemination, genome recombination and/or satellite capture. Ornamental sunflower (Helianthus spp.) plants exhibiting mild leaf curl symptoms were subjected to begomovirus and DNA-satellites isolation. The full-length genome of the isolated begomovirus clone (Od1-A) showed 96.8% nucleotide (nt) sequence identity with mesta yellow vein mosaic virus (MeYVMV; accession no. FR772081) whereas, alphasatellite (Od1-a) and betasatellite (Od1-b) clones showed their highest nt sequence identities at 97.4% and 98.2% with ageratum enation alphasatellite (AEA; accession no. FR772085) and papaya leaf curl betasatellite (PaLCuB; accession. no. LN878112), respectively. The evolutionary relationships, average evolutionary divergence and the recombination events were also inferred. The MeYVMV exhibited 9.5% average evolutionary divergence and its CP and Rep had 9.3% and 12.2%, concomitantly; the alphasatellite and the betasatellite had 8.3% and 5.2%, respectively. The nt substitution rates (site-1 year−1) were found to be 6.983 × 10-04 and 5.702 × 10-05 in the CP and Rep of MeYVMV, respectively. The dN/dS ratio and the Tajima D value of MeYVMV CP demonstrated its possible role in host switching. The absolute quantification of the begomovirus demonstrated that mild symptoms might have a correlation with low virus titer. This is the first identification of MeYVMV and associated DNA-satellites from ornamental sunflower in Pakistan. The role of sequence divergence, recombination and importance of MeYVMV along with DNA-satellites in extending its host range is discussed.
Collapse
|
13
|
Complete nucleotide sequence of a begomovirus associated with an alphasatellite and a betasatellite naturally infecting okra in Jordan. Arch Virol 2021; 166:2033-2036. [PMID: 33900467 DOI: 10.1007/s00705-021-05075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 03/03/2021] [Indexed: 10/21/2022]
Abstract
The complete nucleotide sequences of a monopartite begomovirus and an associated alphasatellite and betasatellite isolated from naturally infected okra (Abelmoschus esculentus) plants originating from Jordan were determined. The sequences of the begomovirus, alphasatellite, and betasatellites were determined to be 2,764, 1,307, and 1,354 nucleotides in length, respectively. Sequence Demarcation Tool (SDT) and phylogenetic analysis revealed that the begomovirus isolate shared the highest (99.5-99.8%) nt sequence identity with isolates of cotton leaf curl Gezira virus (CLCuGeV), a begomovirus found to exclusively infect cotton in Africa, and recently, in Asia and the Middle East. The DNA sequences of the alphasatellite and betasatellite exhibited the highest nt sequence identity (98.7-98.9% and 92.2-95.3%, respectively) to cotton leaf curl Gezira alphasatellite and cotton leaf curl Gezira betasatellite, respectively. This is the first identification of an African begomovirus, associated with DNA satellites, infecting okra in Jordan.
Collapse
|
14
|
Gaafar YZA, Herz K, Hartrick J, Fletcher J, Blouin AG, MacDiarmid R, Ziebell H. Investigating the Pea Virome in Germany-Old Friends and New Players in the Field(s). Front Microbiol 2020; 11:583242. [PMID: 33281777 PMCID: PMC7691430 DOI: 10.3389/fmicb.2020.583242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Peas are an important legume for human and animal consumption and are also being used as green manure or intermediate crops to sustain and improve soil condition. Pea production faces constraints from fungal, bacterial, and viral diseases. We investigated the virome of German pea crops over the course of three successive seasons in different regions of pea production to gain an overview of the existing viruses. Pools from 540 plants, randomly selected from symptomatic and asymptomatic peas, and non-crop plants surrounding the pea fields were used for ribosomal RNA-depleted total RNA extraction followed by high-throughput sequencing (HTS) and RT-PCR confirmation. Thirty-five different viruses were detected in addition to nine associated nucleic acids. From these viruses, 25 are classified as either new viruses, novel strains or viruses that have not been reported previously from Germany. Pea enation mosaic virus 1 and 2 were the most prevalent viruses detected in the pea crops, followed by pea necrotic yellow dwarf virus (PNYDV) and turnip yellows virus which was also found also in the surrounding non-legume weeds. Moreover, a new emaravirus was detected in symptomatic peas in one region for two successive seasons. Most of the identified viruses are known to be aphid transmissible. The results revealed a high virodiversity in the German pea fields that poses new challenges to diagnosticians, researchers, risk assessors and policy makers, as the impact of the new findings are currently unknown.
Collapse
Affiliation(s)
- Yahya Z A Gaafar
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Kerstin Herz
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Jonas Hartrick
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - John Fletcher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Arnaud G Blouin
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Robin MacDiarmid
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Heiko Ziebell
- Julius Kühn Institute, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
15
|
Biswas KK, Bhattacharyya UK, Palchoudhury S, Balram N, Kumar A, Arora R, Sain SK, Kumar P, Khetarpal RK, Sanyal A, Mandal PK. Dominance of recombinant cotton leaf curl Multan-Rajasthan virus associated with cotton leaf curl disease outbreak in northwest India. PLoS One 2020; 15:e0231886. [PMID: 32320461 PMCID: PMC7176085 DOI: 10.1371/journal.pone.0231886] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 04/02/2020] [Indexed: 11/19/2022] Open
Abstract
Cotton leaf curl disease (CLCuD), caused by whitefly (Bemisiatabaci) transmitted single-stranded DNA viruses belonging to the Genus, Begomovirus (family, Geminiviridae) in association with satellite molecules; is responsible for major economic losses in cotton in three northwest (NW) Indian states Haryana, Punjab, and Rajasthan. Annual CLCuD incidences during 2012 to 2014 were estimated to be 37.5%, 63.6%, and 38.8% respectively. Cotton leaves were collected from symptomatic plants annually for three years and subjected to DNA isolation, followed by rolling circle amplification (RCA), cloning, and DNA sequencing of apparently full-length begomoviral genomes and associated betasatellites and alphasatellites. Among the thirteen CLCuD-begomoviral genomes recovered, eight were identified as Cotton leaf curl Multan virus-Rajasthan (CLCuMuV-Ra), one as -Pakistan (PK) and another as -Faisalabad (Fai), whereas, three were as Cotton leaf curl Kokhran virus-Burewala (CLCuKoV-Bu), indicating that CLCuMuV-Ra was the most prevalent begomovirus species. Five of the eight CLCuMuV-Ra sequences were found to be recombinants. The CLCuMuV-Ra- associated satellites consisted of Cotton leaf curl Multan betasatellite (CLCuMB), and Gossypium darwinii symptomless alphasatellite (GDarSLA), and Croton yellow vein mosaic alphasatellite (CrYVMoA). The second most abundant helper virus species, CLCuKoV-Bu, was associated with CLCuMB and GDarSLA.
Collapse
Affiliation(s)
- Kajal Kumar Biswas
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- * E-mail:
| | - Utpal Kumar Bhattacharyya
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Supratik Palchoudhury
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nenavath Balram
- Advanced Centre for Plant Virology, Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Anil Kumar
- Chaudhary Charan Singh Haryana Agricultural University, Haryana, India
| | - Rupesh Arora
- Regional Research Station, Punjab Agricultural University, Punjab, India
| | - Satish Kumar Sain
- ICAR-Central Institute for Cotton Research, Regional Station, Haryana, India
| | - Pradeep Kumar
- Agricultural Research Station, Swami Keshwanand Rajasthan Agriculture University, Rajasthan, India
| | - Ravi K. Khetarpal
- Asia-Pacific Association of Agricultural Research Institutions, Bangkok, Thailand
| | | | | |
Collapse
|
16
|
Frequent occurrence of Mungbean yellow mosaic India virus in tomato leaf curl disease affected tomato in Oman. Sci Rep 2019; 9:16634. [PMID: 31719590 PMCID: PMC6851148 DOI: 10.1038/s41598-019-53106-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Next generation sequencing (NGS) of DNAs amplified by rolling circle amplification from 6 tomato (Solanum lycopersicum) plants with leaf curl symptoms identified a number of monopartite begomoviruses, including Tomato yellow leaf curl virus (TYLCV), and a betasatellite (Tomato leaf curl betasatellite [ToLCB]). Both TYLCV and ToLCB have previously been identified infecting tomato in Oman. Surprisingly the NGS results also suggested the presence of the bipartite, legume-adapted begomovirus Mungbean yellow mosaic Indian virus (MYMIV). The presence of MYMIV was confirmed by cloning and Sanger sequencing from four of the six plants. A wider analysis by PCR showed MYMIV infection of tomato in Oman to be widespread. Inoculation of plants with full-length clones showed the host range of MYMIV not to extend to Nicotiana benthamiana or tomato. Inoculation to N. benthamiana showed TYLCV to be capable of maintaining MYMIV in both the presence and absence of the betasatellite. In tomato MYMIV was only maintained by TYLCV in the presence of the betasatellite and then only at low titre and efficiency. This is the first identification of TYLCV with ToLCB and the legume adapted bipartite begomovirus MYMIV co-infecting tomato. This finding has far reaching implications. TYLCV has spread around the World from its origins in the Mediterranean/Middle East, in some instances, in live tomato planting material. The results here may suggest that begomoviruses which do not commonly infect tomato, such as MYMIV, could be spread as a passenger of TYLCV in tomato.
Collapse
|
17
|
Mubin M, Briddon RW, Mansoor S. The V2 protein encoded by a monopartite begomovirus is a suppressor of both post-transcriptional and transcriptional gene silencing activity. Gene 2019; 686:43-48. [PMID: 30399424 DOI: 10.1016/j.gene.2018.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/08/2018] [Accepted: 11/01/2018] [Indexed: 11/23/2022]
Abstract
Papaya leaf curl virus (PaLCuV) is a begomovirus (genus Begomovirus; family Geminiviridae) with a monopartite genome that is usually associated with beta- and alphasatellites in plants. Geminiviruses are DNA viruses with small circular genomes that occur as minichromosomes in the nucleus and are susceptible to post-transcriptional gene silencing (PTGS) and transcriptional gene silencing (TGS). Transient expression of the PaLCuV V2 (PV2) protein together with the green fluorescent protein (GFP) in Nicotiana benthamiana resulted in enhanced levels of GFP fluorescence and GFP mRNA, indicative of suppression of PTGS. Expression of PV2 from a Potato virus X vector restored GFP expression in N. benthamiana plants harbouring a transcriptionally silenced GFP transgene, indicative of suppression of TGS. The results show that the PV2 protein encoded by PaLCuV has both suppressor of PTGS and TGS activity and is an important factor in overcoming host RNA-silencing based defenses.
Collapse
Affiliation(s)
- Muhammad Mubin
- Virology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan; Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan.
| | - Rob W Briddon
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| | - Shahid Mansoor
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Jhang Road, Faisalabad, Pakistan
| |
Collapse
|
18
|
Conflon D, Granier M, Tiendrébéogo F, Gentit P, Peterschmitt M, Urbino C. Accumulation and transmission of alphasatellite, betasatellite and tomato yellow leaf curl virus in susceptible and Ty-1-resistant tomato plants. Virus Res 2018; 253:124-134. [PMID: 29908896 DOI: 10.1016/j.virusres.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
Begomoviruses (family Geminiviridae) are frequently associated with alphasatellites and betasatellites in the Old World. Tomato yellow leaf curl virus, one of the most damaging begomovirus species worldwide, was recently found associated with betasatellites in the eastern coast of the Mediterranean Sea, and in the Middle East region. Tomato yellow leaf curl virus (TYLCV)/betasatellite associations were shown to increase TYLCV virulence in experimental conditions. The sustainability of TYLCV/satellite associations in tomato was assessed here by estimating accumulation levels of satellites in comparison to TYLCV, vector transmission efficiency, and by testing how far the popular Ty-1 resistance gene used in most TYLCV-resistant tomato cultivars in the Mediterranean Basin is effective against betasatellites. Three satellites previously isolated from okra in Burkina Faso-of the species Cotton leaf curl Gezira betasatellite, Cotton leaf curl Gezira alphasatellite and Okra leaf curl Burkina Faso alphasatellite-were shown to accumulate at levels similar to, or higher than, the helper virus TYLCV-Mld in tomato plants from 32 to 150 days post inoculation (dpi). Cotton leaf curl Gezira betasatellite (CLCuGB) reduced TYLCV-Mld accumulation whereas alphasatellites did not. Transmission tests were performed with B. tabaci from plants infected with TYLCV-Mld/CLCuGB- or TYLCV-Mld/Okra leaf curl Burkina Faso alphasatellite. At 32 dpi, both satellites were transmitted to more than 50% of TYLCV-infected test plants. Betasatellite transmission, tested further with 150 dpi source plants was successful in more than 30% of TYLCV-infected test plants. Ty-1 resistant tomato plants co-infected with TYLCV (-Mld or -IL) and CLCuGB exhibited mild leaf curling and mosaic symptoms at the early stage of infection associated with a positive effect on TYLCV-IL accumulation, while resistant plants infected with TYLCV only, were asymptomatic. Together with previous experimental studies, these results further emphasize the potential risk of betasatellites to tomato cultivation, including with Ty-1 resistant cultivars.
Collapse
Affiliation(s)
- Déborah Conflon
- CIRAD, UMR BGPI, F-34398, Montpellier, France; BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Martine Granier
- CIRAD, UMR BGPI, F-34398, Montpellier, France; BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales (LVBV), INERA, 01 BP 476, Ouagadougou 01, Burkina Faso; Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Pascal Gentit
- ANSES, Plant Health Laboratory, Unité de Bactériologie, Virologie et détection des OGM, 7 rue Jean Dixméras, 49044, Angers Cedex 01, France
| | - Michel Peterschmitt
- CIRAD, UMR BGPI, F-34398, Montpellier, France; BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Cica Urbino
- CIRAD, UMR BGPI, F-34398, Montpellier, France; BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
19
|
Alphasatellitidae: a new family with two subfamilies for the classification of geminivirus- and nanovirus-associated alphasatellites. Arch Virol 2018; 163:2587-2600. [PMID: 29740680 DOI: 10.1007/s00705-018-3854-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/25/2018] [Indexed: 10/16/2022]
Abstract
Nanoviruses and geminiviruses are circular, single stranded DNA viruses that infect many plant species around the world. Nanoviruses and certain geminiviruses that belong to the Begomovirus and Mastrevirus genera are associated with additional circular, single stranded DNA molecules (~ 1-1.4 kb) that encode a replication-associated protein (Rep). These Rep-encoding satellite molecules are commonly referred to as alphasatellites and here we communicate the establishment of the family Alphasatellitidae to which these have been assigned. Within the Alphasatellitidae family two subfamilies, Geminialphasatellitinae and Nanoalphasatellitinae, have been established to respectively accommodate the geminivirus- and nanovirus-associated alphasatellites. Whereas the pairwise nucleotide sequence identity distribution of all the known geminialphasatellites (n = 628) displayed a troughs at ~ 70% and 88% pairwise identity, that of the known nanoalphasatellites (n = 54) had a troughs at ~ 67% and ~ 80% pairwise identity. We use these pairwise identity values as thresholds together with phylogenetic analyses to establish four genera and 43 species of geminialphasatellites and seven genera and 19 species of nanoalphasatellites. Furthermore, a divergent alphasatellite associated with coconut foliar decay disease is assigned to a species but not a subfamily as it likely represents a new alphasatellite subfamily that could be established once other closely related molecules are discovered.
Collapse
|