1
|
Abdel-Mawgod S, Zanaty A, Elhusseiny M, Said D, Samir A, Elsayed MM, Mahana O, Said M, Hussein AM, Hassan HM, Selim A, Shahien MA, Selim K. Genetic heterogeneity of chicken anemia virus isolated in selected Egyptian provinces as a preliminary investigation. Front Vet Sci 2024; 11:1362219. [PMID: 38840626 PMCID: PMC11150715 DOI: 10.3389/fvets.2024.1362219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
Chicken anemia virus (CAV) is a widespread and economically significant pathogen in the poultry industry. In this study 110 samples were collected from various poultry farms in selected Egyptian provinces during 2021-2022 and were tested against CAV by Polymerase Chain Reaction (PCR), revealing 22 positive samples with 20% incidence rate. Full sequence analysis of five selected CAV strains revealed genetic variations in VP1, VP2, and VP3 genes. Phylogenetic analysis grouped the Egyptian strains with reference viruses, mainly in group II, while vaccines like Del-Rose were categorized in group III. Recombination events were detected between an Egyptian strain (genotype II) and the Del-Rose vaccine strain (genotype III), indicating potential recombination between live vaccine strains and field isolates. To evaluate pathogenicity, one Egyptian isolate (F883-2022 CAV) and Del-Rose vaccine were tested in Specific Pathogen Free (SPF) chicks. Chicks in the positive group displayed clinical symptoms, including weakness and stunted growth, with postmortem findings consistent with CAV infection. The vaccine group showed milder symptoms and less severe postmortem changes. This study provides important insights into the genetic diversity of CAV in selected Egyptian poultry farms showing recombination event between field strain and vaccine strains, highlighting the need for advanced vaccination programs, especially for broilers.
Collapse
Affiliation(s)
- Sara Abdel-Mawgod
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Ali Zanaty
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mohamed Elhusseiny
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Dalia Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Abdelhafez Samir
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Moataz M. Elsayed
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Osama Mahana
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Mahmoud Said
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Ahmed M. Hussein
- Division of Pharmacology and Toxicology, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Heba M. Hassan
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Abdullah Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Momtaz A. Shahien
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| | - Karim Selim
- Reference Laboratory for Veterinary Quality Control on Poultry Production, Animal Health Research Institute, Agriculture Research Center, Giza, Egypt
| |
Collapse
|
2
|
Xu S, Zhang Z, Xu X, Ji J, Yao L, Kan Y, Xie Q, Bi Y. Molecular Characteristics of Chicken Infectious Anemia Virus in Central and Eastern China from 2020 to 2022. Animals (Basel) 2023; 13:2709. [PMID: 37684973 PMCID: PMC10487239 DOI: 10.3390/ani13172709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
To evaluate the recent evolution of CIAV in China, 43 flocks of chickens from the provinces of Henan, Jiangsu, Hubei, and Anhui were screened via polymerase chain reaction during 2020-2022. Of these, 27 flocks tested positive for CIAV nucleic acids, including 12 which were positive for other immunosuppression viruses. Additionally, 27 CIAV strains were isolated, and their whole genomes were sequenced. The AH2001 and JS2002 strains shared the highest identity at 99.56%, and the HB2102 and HB2101 strains shared the lowest identity at 95.34%. Based on the genome sequences of these strains and reference strains, a phylogenetic tree was constructed and divided into eight main branches. Most of the strains were grouped with the East Asian strains, whereas the HB2101 strain belonged to the Brazil and Argentina cluster. A recombination event was detected in multiple strains, in which AH2002 recombined from KJ728827/China/2014 (from Taiwan Province) and HN2203, and AH2202 recombined from KX811526/China/2017 (from Shandong Province) and HN2203. All the obtained strains had a highly pathogenic Gln amino acid site at position 394 of the VP1. Overall, our findings demonstrate the importance of CIAV monitoring and provide data that aid in understanding the evolution of CIAV.
Collapse
Affiliation(s)
- Shuqi Xu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China; (S.X.); (Z.Z.); (X.X.); (L.Y.); (Y.K.)
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang 473061, China
| | - Zhibin Zhang
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China; (S.X.); (Z.Z.); (X.X.); (L.Y.); (Y.K.)
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang 473061, China
| | - Xin Xu
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China; (S.X.); (Z.Z.); (X.X.); (L.Y.); (Y.K.)
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang 473061, China
| | - Jun Ji
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China; (S.X.); (Z.Z.); (X.X.); (L.Y.); (Y.K.)
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang 473061, China
| | - Lunguang Yao
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China; (S.X.); (Z.Z.); (X.X.); (L.Y.); (Y.K.)
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang 473061, China
| | - Yunchao Kan
- Henan Provincial Engineering and Technology Center of Health Products for Livestock and Poultry, Nanyang Normal University, Nanyang 473061, China; (S.X.); (Z.Z.); (X.X.); (L.Y.); (Y.K.)
- Henan Key Laboratory of Insect Biology in Funiu Mountain, Nanyang Normal University, Nanyang 473061, China
| | - Qingmei Xie
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.X.); (Y.B.)
| | - Yingzuo Bi
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China; (Q.X.); (Y.B.)
| |
Collapse
|
3
|
Shah PT, Bahoussi AN, Cui X, Shabir S, Wu C, Xing L. Genetic diversity, distribution, and evolution of chicken anemia virus: A comparative genomic and phylogenetic analysis. Front Microbiol 2023; 14:1145225. [PMID: 36970671 PMCID: PMC10034120 DOI: 10.3389/fmicb.2023.1145225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Chicken infectious anemia (CIA) is an immunosuppressive poultry disease that causes aplastic anemia, immunosuppression, growth retardation and lymphoid tissue atrophy in young chickens and is responsible for huge economic losses to the poultry industry worldwide. The disease is caused by the chicken anemia virus (CAV), which belongs to the genus Gyrovirus, family Anelloviridae. Herein, we analyzed the full-length genomes of 243 available CAV strains isolated during 1991-2020 and classified them into two major clades, GI and GII, divided into three and four sub-clades, GI a-c, and GII a-d, respectively. Moreover, the phylogeographic analysis revealed that the CAVs spread from Japan to China, China to Egypt and subsequently to other countries, following multiple mutational steps. In addition, we identified eleven recombination events within the coding and non-coding regions of CAV genomes, where the strains isolated in China were the most active and involved in ten of these events. Furthermore, the amino acids variability analysis indicated that the variability coefficient exceeded the estimation limit of 1.00 in VP1, VP2, and VP3 proteins coding regions, demonstrating substantial amino acid drift with the rise of new strains. The current study offers robust insights into the phylogenetic, phylogeographic and genetic diversity characteristics of CAV genomes that may provide valuable data to map the evolutionary history and facilitate preventive measures of CAVs.
Collapse
Affiliation(s)
- Pir Tariq Shah
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | | | - Xiaogang Cui
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Shaista Shabir
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
| | - Changxin Wu
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Li Xing
- Institutes of Biomedical Sciences, Shanxi University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Shanxi University, Taiyuan, China
- Shanxi Provincial Key Laboratory for Prevention and Treatment of Major Infectious Diseases, Taiyuan, China
- The Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
4
|
Wu X, Kong J, Yao Z, Sun H, Liu Y, Wu Z, Liu J, Zhang H, Huang H, Wang J, Chen M, Zeng Y, Huang Y, Chen F, Xie Q, Zhang X. A new rapid and sensitive method for detecting chicken infectious anemia virus. Front Microbiol 2022; 13:994651. [PMID: 36246275 PMCID: PMC9558101 DOI: 10.3389/fmicb.2022.994651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/26/2022] [Indexed: 12/03/2022] Open
Abstract
Since the chicken infectious anemia virus (CIAV) was discovered in 1979, which has been reported as an economically significant and immunosuppressive poultry disease in the world. A novel clinical detection method for the prevention and control of CIAV in the poultry sector is urgently needed. Here, we established a real-time recombinase-aided amplification assay (RAA) for CIAV on-site with a rapid, highly sensitive, strongly specific, low-cost, and simple operational molecular diagnosis detection method. The primers and probe were developed using the CIAV VP2 gene sequence, which has a 117-bp specific band. This assay, which could be carried out at 41°C and completed in 30 min without cross-reactivity with other viruses, had the lowest detection limit of 10 copies of CIAV DNA molecules per reaction. Furthermore, the kappa value of this assay was 0.947, the sensitivity was 93.33%, and the specificity was 100% when compared to the real-time quantitative polymerase chain reaction assay (real-time qPCR). These results indicate that using a real-time RAA assay to detect CIAV on-site could be beneficial. In the future, the real-time RAA test may be a regular assay for the prevention and control of CIAV, as well as help the reduction of economic losses in the poultry business.
Collapse
Affiliation(s)
- Xiuhong Wu
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Jie Kong
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Ziqi Yao
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Hejing Sun
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Yuanjia Liu
- Department of Veterinary Medicine, College of Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhiqiang Wu
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd, Yunfu, Xinxing, China
| | - Jiajia Liu
- Wen’s Group Academy, Wen’s Foodstuffs Group Co., Ltd, Yunfu, Xinxing, China
| | - Hao Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Haohua Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Jin Wang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Mengjun Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Yichen Zeng
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Yinpeng Huang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
| | - Feng Chen
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
| | - Qingmei Xie
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- *Correspondence: Qingmei Xie,
| | - Xinheng Zhang
- Heyuan Branch, Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, College of Animal Science, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Vector Vaccine of Animal Virus, Guangzhou, China
- South China Collaborative Innovation Center for Poultry Disease Control and Product Safety, Guangzhou, China
- Xinheng Zhang,
| |
Collapse
|
5
|
Li Y, Wang J, Chen L, Wang Q, Zhou M, Zhao H, Chi Z, Wang Y, Chang S, Zhao P. Genomic Characterization of CIAV Detected in Contaminated Attenuated NDV Vaccine: Epidemiological Evidence of Source and Vertical Transmission From SPF Chicken Embryos in China. Front Vet Sci 2022; 9:930887. [PMID: 35873689 PMCID: PMC9298830 DOI: 10.3389/fvets.2022.930887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Live attenuated vaccines have been extensively used to prevent infectious disease in poultry flocks. Freedom from exogenous virus is a high priority for any veterinary vaccines. Recently, attenuated Newcastle disease virus (NDV) vaccines were detected to be contaminated with chicken infectious anemia virus (CIAV) in a routine screening for exogenous viruses. To investigate the possible source of the contamination, we conducted virological tests on a specific-pathogen-free (SPF) layer breeder flock that provide the raw materials for vaccines in this manufacturer. Firstly, CIAV antibodies in serum and egg yolks samples of the SPF laying hens were detected by ELISA assays. The results showed that CIAV antibodies in serum and egg yolks were 62% positive and 57% positive, respectively. Then, DNA was extracted from the NDV vaccines and SPF chicken embryonated eggs, and detected by molecular virology assays. The results showed that three assays for pathogens in embryonated eggs had similar positive rates (35.8%). And the sequences of CIAV from SPF embryos and NDV vaccines consisted of 2,298 nucleotides (nt) with 100% homology. The new full-length genome of CIAV was designated SDSPF2020 (Genbank accession number: MW660821). Data showed SDSPF2020 had the sequence similarities of 95.8–99.6% with reference strains, and shared the highest homology with the Chinese strain HLJ15125. These results strongly suggested that exogenous CIAV contamination is most likely caused by wild virus infection in SPF flocks and vertical transmission to chicken embryos. Collectively, this study illustrated that vertical transmission of CIAV from a SPF layer breeder flock to embryos was a non-neglible way for exogenous virus contamination in vaccine production.
Collapse
Affiliation(s)
- Yan Li
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jinjin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Longfei Chen
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Qun Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Meng Zhou
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hui Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Zengna Chi
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Yixin Wang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Shuang Chang
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Peng Zhao
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
6
|
Liu L, Li Y, Yin M, Zhao P, Guo L, Wang Y. Genomic Characterization of Chicken Anemia Virus in Broilers in Shandong Province, China, 2020–2021. Front Vet Sci 2022; 9:816860. [PMID: 35372548 PMCID: PMC8968957 DOI: 10.3389/fvets.2022.816860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chicken infectious anemia (CIA), caused by chicken anemia virus (CAV), is an immunosuppressive disease characterized by growth retardation, aplastic anemia, lymphoid depletion, and immunodepression in young chickens. In this study, 33 CAV strains were isolated from broilers in Shandong Province during 2020–2021. Phylogenetic analysis of full-length genome sequences showed that most CAV strains isolated in this study were scattered across different branches, but mainly clustered in two genotypes, indicating a certain regional characteristic. Analysis of VP1 protein identified several amino acid substitutions which were relevant with the virulence and virus spread efficiency. Interestingly, four putative DNA recombination events were detected in the genomes of novel isolated CAV strains. In summary, this study demonstrated a genomic diversity of CAV in broilers isolated in Shandong Province during 2020–2021, and provided information for the further study of CAV molecular epidemiology and viral evolution.
Collapse
Affiliation(s)
- Ling Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Yuyan Li
- Shandong Yisheng Livestock and Poultry Breeding Co., Ltd., Yantai, China
| | - Mingrong Yin
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Peng Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
| | - Longzong Guo
- Shandong Yisheng Livestock and Poultry Breeding Co., Ltd., Yantai, China
- *Correspondence: Longzong Guo
| | - Yixin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai'an, China
- Yixin Wang
| |
Collapse
|
7
|
Genetic Heterogeneity among Chicken Infectious Anemia Viruses Detected in Italian Fowl. Animals (Basel) 2021; 11:ani11040944. [PMID: 33801597 PMCID: PMC8067058 DOI: 10.3390/ani11040944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/20/2021] [Accepted: 03/24/2021] [Indexed: 01/20/2023] Open
Abstract
Chicken infectious anemia virus (CIAV) is a pathogen of chickens associated with immunosuppression and with a disease named chicken infectious anemia. The present survey reports an epidemiological study on CIAV distribution in Italian broiler, broiler breeder and backyard chicken flocks. Twenty-five strains were detected by a specifically developed nested PCR protocol, and molecularly characterized by partial VP1 gene or complete genome sequencing. Viral DNA amplification was successfully obtained from non-invasive samples such as feathers and environmental dust. Sequence and phylogenetic analysis showed the circulation of field or potentially vaccine-derived strains with heterogeneous sequences clustered into genogroups II, IIIa, and IIIb. Marker genome positions, reported to be correlated with CIAV virulence, were evaluated in field strains. In conclusion, this is the first survey focused on the molecular characteristics of Italian CIAVs, which have proved to be highly heterogeneous, implementing at the same time a distribution map of field viruses worldwide.
Collapse
|
8
|
Hosseini H, Majidi S, Ziafati Kafi Z, Esmaeelzadeh Dizaji R, Ghalyanchilangeroudi A. Molecular characterization and the first full sequencing genome of chicken infectious anemia virus (CIAV) in Iran. IRANIAN JOURNAL OF VETERINARY RESEARCH 2021; 22:331-336. [PMID: 35126541 PMCID: PMC8806177 DOI: 10.22099/ijvr.2021.38455.5593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 06/07/2021] [Accepted: 06/21/2021] [Indexed: 01/24/2023]
Abstract
BACKGROUND The chicken infectious anemia virus (CIAV) is an important pathogen that causes severe immunosuppression in young chickens. AIMS The study aims to characterize the genotype and full-length sequencing of CIAV strains in Iran. METHODS First, the collected thymus samples were investigated by conventional PCR for CIAV detection. Second, one of the CIAV positive samples (UT-Zahraee) was chosen for full genome sequencing. RESULTS Throughout 2017, we detected 13 CIAVs isolated from 40 broiler flocks of different provinces of Iran. A comparison of the complete sequences of the genome and homologies of the nucleotides revealed that UT-Zahraee had a high similarity with American and Egyptian CIAV isolates. Moreover, VP1 sequence analysis showed that UT-Zahraee shared high homology with previously reported Iranian CIAV strains, Chinese, and Egyptian isolates. CONCLUSION This study is the first report of full genome sequencing of CIAV strain from Iran. It will be beneficial to understand better the epidemiology and molecular characteristics of CIAV circulating in Iran.
Collapse
Affiliation(s)
- H. Hosseini
- Department of Clinical Science, Karaj Branch, Islamic Azad University, Karaj, Iran;
| | - S. Majidi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Z. Ziafati Kafi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - R. Esmaeelzadeh Dizaji
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - A. Ghalyanchilangeroudi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran,Correspondence: A. Ghalyanchilangeroudi, Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. E-mail:
| |
Collapse
|
9
|
Epidemiology, molecular characterization, and recombination analysis of chicken anemia virus in Guangdong province, China. Arch Virol 2020; 165:1409-1417. [PMID: 32318833 DOI: 10.1007/s00705-020-04604-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 03/02/2020] [Indexed: 01/25/2023]
Abstract
Chicken anemia virus (CAV) causes severe anemia and immunosuppression in young chickens and a compromised immune response in older birds, resulting in great economic losses to the poultry industry worldwide. Here, we report the molecular epidemiology and characterization of CAV circulating in poultry in Guangdong province, China. Ninety-one of 277 chickens collected from 2016 to 2017 were CAV positive. Full-genome sequencing revealed the presence of eight separate strains. Phylogenetic analysis based on the genome sequences obtained in this study and related sequences available in the GenBank database showed that all of the CAV isolates exhibit a close relationship to each other and belong to the same genotypic group. Putative recombination events were also detected in the genomes of the newly isolated CAVs. Collectively, our findings underscore the importance of CAV surveillance and provide information that will lead to a better understanding of the evolution of CAV.
Collapse
|
10
|
Chicken anaemia virus enhances and prolongs subsequent avian influenza (H9N2) and infectious bronchitis viral infections. Vet Microbiol 2019; 230:123-129. [PMID: 30827377 DOI: 10.1016/j.vetmic.2019.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/15/2019] [Accepted: 01/27/2019] [Indexed: 01/01/2023]
Abstract
Immunosuppressive viral diseases have a great economic importance in the poultry industry due to the increased susceptibility to secondary infections. Chicken anaemia virus (CAV) is one of the major immunosuppressive diseases in chickens. In addition, low pathogenic avian influenza (LPAI) of subtype H9N2 and infectious bronchitis (IB) viruses are among the most frequently reported respiratory viral diseases in poultry worldwide. In the present study, specific pathogen free chickens were used to understand the impact of CAV on secondary infection with LPAI-H9N2 or IB viruses. Clinical outcomes, viral shedding dynamics, and cytokine levels wereassessed. The results exhibit that chickens previously infected with CAV produceconsiderablyhigher titresof LPAI-H9N2 or IB viruses in the oropharyngeal swabs (P < 0.05), tracheas and kidneys. In addition, the immunologic effect of CAV provokedthe development of clinical signs of LPAI-H9N2 and IB virus infections. Moreover, results suggested that pre-infection with CAV directly correlated with elevated levels of IL-6 and IFNγ. These findings underline the importance of CAV pre-infection on LPAI-H9N2 or IB infection in chickens, and indicate that co-circulation of CAV can contribute to the spread and evolution of LPAI H9N2 and IB viruses.
Collapse
|