1
|
Chen S, Yu Y, Su Y, Lian X, Jiang L, Li Z, Zhang M, Gao Y, Zhang H, Zhu X, Ke J, Chen X. Screening and identification of host signaling pathways for alleviating influenza-induced production of pro-inflammatory cytokines, IP-10, IL-8, and MCP-1, using a U937 cell-based influenza model. Front Microbiol 2025; 16:1535002. [PMID: 39931380 PMCID: PMC11808136 DOI: 10.3389/fmicb.2025.1535002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025] Open
Abstract
Influenza virus infection initiates an exaggerated inflammatory response, which may culminate in a fatal cytokine storm characterized by the excessive production of pro-inflammatory cytokines. Prior research indicates that IP-10, IL-8, and MCP-1, primarily produced by monocytes and macrophages, play a crucial role in influenza-induced inflammation. The lung injury from influenza virus infection can be mitigated by suppressing or inhibiting these cytokines through knockout, knockdown, or targeted intervention approaches. To identify the key host signaling pathways responsible for producing pro-inflammatory cytokines, we utilized a U937 cell model that secretes IP-10, IL-8, and MCP-1 in response to influenza infection. This model has been previously validated in our laboratory as an appropriate system for screening anti-inflammatory agents and potential drug targets. We conducted a screening assay employing an inhibitor library consisting of 2,138 compounds that target various known pathways and host factors. Our findings indicated that inhibitors targeting protein tyrosine kinases and mitogen-activated protein kinases demonstrated superior efficacy in suppressing cytokine production induced by influenza A virus infection compared to inhibitors aimed at other host factors. Notably, a substantial proportion of the identified hits capable of inhibiting the expression of all three cytokines in the secondary screening were classified as tyrosine kinase inhibitors. Validation experiments further established that Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathways, along with p38 MAPK and Raf-MEK-ERK pathways, are the principal regulators of pro-inflammatory cytokine expression in monocytes and macrophages. Moreover, our results suggest that TKIs present promising opportunities as novel therapeutic agents against influenza-induced pneumonia.
Collapse
Affiliation(s)
- Si Chen
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yang Yu
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yue Su
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xiaoqin Lian
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Lefang Jiang
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Zhuogang Li
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Mingxin Zhang
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Yarou Gao
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Haonan Zhang
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xingjian Zhu
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Jiaxin Ke
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Xulin Chen
- Department of Immunology and Microbiology, College of Life Science and Technology, Institute of Medical Microbiology, Jinan University, Guangzhou, China
| |
Collapse
|
2
|
Sharma P, Venkatachalam K, Binesh A. Decades Long Involvement of THP-1 Cells as a Model for Macrophage Research: A Comprehensive Review. Antiinflamm Antiallergy Agents Med Chem 2024; 23:85-104. [PMID: 38676532 DOI: 10.2174/0118715230294413240415054610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
Over the years, researchers have endeavored to identify dependable and reproducible in vitro models for examining macrophage behavior under controlled conditions. The THP-1 cell line has become a significant and widely employed tool in macrophage research within these models. Originating from the peripheral blood of individuals with acute monocytic leukemia, this human monocytic cell line can undergo transformation into macrophage-like cells, closely mirroring primary human macrophages when exposed to stimulants. Macrophages play a vital role in the innate immune system, actively regulating inflammation, responding to infections, and maintaining tissue homeostasis. A comprehensive understanding of macrophage biology and function is crucial for gaining insights into immunological responses, tissue healing, and the pathogenesis of diseases such as viral infections, autoimmune disorders, and neoplastic conditions. This review aims to thoroughly evaluate and emphasize the extensive history of THP-1 cells as a model for macrophage research. Additionally, it will delve into the significance of THP-1 cells in advancing our comprehension of macrophage biology and their invaluable contributions to diverse scientific domains.
Collapse
Affiliation(s)
- Prakhar Sharma
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Kaliyamurthi Venkatachalam
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| | - Ambika Binesh
- Institute of Fisheries Post Graduate Studies, Tamil Nadu Dr. J. Jayalalithaa Fisheries University (TNJFU), OMR Campus, Vaniyanchavadi, Chennai, 603103, Tamil Nadu, India
| |
Collapse
|
3
|
The Role of Innate Leukocytes during Influenza Virus Infection. J Immunol Res 2019; 2019:8028725. [PMID: 31612153 PMCID: PMC6757286 DOI: 10.1155/2019/8028725] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza virus infection is a serious threat to humans and animals, with the potential to cause severe pneumonia and death. Annual vaccination strategies are a mainstay to prevent complications related to influenza. However, protection from the emerging subtypes of influenza A viruses (IAV) even in vaccinated individuals is challenging. Innate immune cells are the first cells to respond to IAV infection in the respiratory tract. Virus replication-induced production of cytokines from airway epithelium recruits innate immune cells to the site of infection. These leukocytes, namely, neutrophils, monocytes, macrophages, dendritic cells, eosinophils, natural killer cells, innate lymphoid cells, and γδ T cells, become activated in response to IAV, to contain the virus and protect the airway epithelium while triggering the adaptive arm of the immune system. This review addresses different anti-influenza virus schemes of innate immune cells and how these cells fine-tune the balance between immunoprotection and immunopathology during IAV infection. Detailed understanding on how these innate responders execute anti-influenza activity will help to identify novel therapeutic targets to halt IAV replication and associated immunopathology.
Collapse
|