1
|
Sánchez-Lerma L, Mattar S, Contreras V, Miranda J, Tique V, Rodríguez V, Rodriguez D, Lopez S, Rojas-Gulloso A. Hantavirus and Leptospira are important causes of nonspecific acute febrile syndrome, Meta, Colombia. Travel Med Infect Dis 2025; 64:102800. [PMID: 39828113 DOI: 10.1016/j.tmaid.2025.102800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 11/26/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
INTRODUCTION Acute undifferentiated febrile illnesses are fevers lasting less than fourteen days without an evident focus of infection on the initial physical examination or with inconclusive laboratory tests. OBJECTIVE Carry out epidemiological surveillance of the etiology of acute undifferentiated febrile syndrome in the Meta department. METHODS A descriptive, prospective cross-sectional study was carried out between February 2021 and June 2023 in a first-level hospital in the department of Meta, Colombia. All enrolled patients underwent routine hematology and blood biochemistry examinations. RT-qPCR was performed for Dengue and serology for laboratory diagnoses using ELISA and MAT for Hantavirus and Leptospirosis, respectively. A descriptive and bivariate analysis was performed using SPSS vr 23.0. RESULTS Of the study's total of one hundred patients, 14 % showed antibodies against hantavirus IgG, of which two were seroconverted. In addition, a risk factor OR = 8.3 (CI = 1.8-38.4) for Hantavirus was found in those patients who had contact with farm animals. Regarding leptospirosis, 3 % of the sera agglutinated with titers greater than 1:400, resulting in a primary infection; 11 % of the sera presented agglutination with titers no greater than 1:200 as exposure to leptospirosis. The bivariate analysis showed an OR = 2.4; CI = 0.75-7.4 with water recreational activities in the last 30 days before the onset of symptoms. CONCLUSIONS Our study demonstrates the importance of Hantavirus, Dengue, and leptospirosis as a cause of acute undifferentiated febrile illnesses. Coinfections are frequent in one of the tropical areas of Colombia, so it is crucial to establish a more precise diagnosis.
Collapse
Affiliation(s)
- Liliana Sánchez-Lerma
- Universidad Cooperativa de Colombia, Facultad de Medicina. Grupo de investigación de Villavicencio-GRIVI, y Centro de Investigación en Salud para el Trópico, Colombia
| | - Salim Mattar
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Córdoba, Colombia.
| | - Verónica Contreras
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Córdoba, Colombia
| | - Jorge Miranda
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Córdoba, Colombia
| | - Vaneza Tique
- Universidad de Córdoba, Instituto de Investigaciones Biológicas del Trópico, Montería, Córdoba, Colombia
| | - Virginia Rodríguez
- University of Cordoba, Faculty of Health Sciences, Department of Bacteriology, Research group GIMBIC. Monteria, Cordoba, Colombia
| | - Derly Rodriguez
- Hospital Departamental de Villavicencio, Meta-Colombia, Colombia
| | - Sonia Lopez
- Universidad Cooperativa de Colombia, Facultad de Medicina. Grupo de investigación de Villavicencio-GRIVI, y Centro de Investigación en Salud para el Trópico, Colombia
| | - Andrés Rojas-Gulloso
- Universidad Cooperativa de Colombia, Facultad de Medicina. Grupo de investigación de Villavicencio-GRIVI, y Centro de Investigación en Salud para el Trópico, Colombia.
| |
Collapse
|
2
|
Paquette SJ, Simon AY, XIII A, Kobinger GP, Shahhosseini N. Medically Significant Vector-Borne Viral Diseases in Iran. Microorganisms 2023; 11:3006. [PMID: 38138150 PMCID: PMC10745727 DOI: 10.3390/microorganisms11123006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Vector-borne viral diseases (VBVDs) continue to pose a considerable public health risk to animals and humans globally. Vectors have integral roles in autochthonous circulation and dissemination of VBVDs worldwide. The interplay of agricultural activities, population expansion, urbanization, host/pathogen evolution, and climate change, all contribute to the continual flux in shaping the epidemiology of VBVDs. In recent decades, VBVDs, once endemic to particular countries, have expanded into new regions such as Iran and its neighbors, increasing the risk of outbreaks and other public health concerns. Both Iran and its neighboring countries are known to host a number of VBVDs that are endemic to these countries or newly circulating. The proximity of Iran to countries hosting regional diseases, along with increased global socioeconomic activities, e.g., international trade and travel, potentially increases the risk for introduction of new VBVDs into Iran. In this review, we examined the epidemiology of numerous VBVDs circulating in Iran, such as Chikungunya virus, Dengue virus, Sindbis virus, West Nile virus, Crimean-Congo hemorrhagic fever virus, Sandfly-borne phleboviruses, and Hantavirus, in relation to their vectors, specifically mosquitoes, ticks, sandflies, and rodents. In addition, we discussed the interplay of factors, e.g., urbanization and climate change on VBVD dissemination patterns and the consequent public health risks in Iran, highlighting the importance of a One Health approach to further surveil and to evolve mitigation strategies.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| | - Ayo Yila Simon
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z4, Canada;
| | - Ara XIII
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Gary P. Kobinger
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.X.); (G.P.K.)
| | - Nariman Shahhosseini
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada;
| |
Collapse
|
3
|
Karbalaei M. Evidence of hantavirus circulation among the Iranian population: An emerging neglected tropical disease. Ann Med Surg (Lond) 2022; 83:104809. [PMID: 36345418 PMCID: PMC9636438 DOI: 10.1016/j.amsu.2022.104809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/23/2022] [Indexed: 11/11/2022] Open
|
4
|
Sun B, Zhang J, Wang J, Liu Y, Sun H, Lu Z, Chen L, Ding X, Pan J, Hu C, Yang S, Jiang D, Yang K. Comparative Immunoreactivity Analyses of Hantaan Virus Glycoprotein-Derived MHC-I Epitopes in Vaccination. Vaccines (Basel) 2022; 10:564. [PMID: 35455313 PMCID: PMC9030823 DOI: 10.3390/vaccines10040564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 11/25/2022] Open
Abstract
MHC-I antigen processes and presentation trigger host-specific anti-viral cellular responses during infection, in which epitope-recognizing cytotoxic T lymphocytes eliminate infected cells and contribute to viral clearance through a cytolytic killing effect. In this study, Hantaan virus (HTNV) GP-derived 9-mer dominant epitopes were obtained with high affinity to major HLA-I and H-2 superfamilies. Further immunogenicity and conservation analyses selected 11 promising candidates, and molecule docking (MD) was then simulated with the corresponding MHC-I alleles. Two-way hierarchical clustering revealed the interactions between GP peptides and MHC-I haplotypes. Briefly, epitope hotspots sharing good affinity to a wide spectrum of MHC-I molecules highlighted the biomedical practice for vaccination, and haplotype clusters represented the similarities among individuals during T-cell response establishment. Cross-validation proved the patterns observed through both MD simulation and public data integration. Lastly, 148 HTNV variants yielded six types of major amino acid residue replacements involving four in nine hotspots, which minimally influenced the general potential of MHC-I superfamily presentation. Altogether, our work comprehensively evaluates the pan-MHC-I immunoreactivity of HTNV GP through a state-of-the-art workflow in light of comparative immunology, acknowledges present discoveries, and offers guidance for ongoing HTNV vaccine pursuit.
Collapse
Affiliation(s)
- Baozeng Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Junqi Zhang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Jiawei Wang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Yang Liu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
- Shaanxi Provincial Center for Disease Control and Prevention, Xi’an 710054, China
| | - Hao Sun
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
- Tangshan Sannvhe Airport, Tangshan 063000, China
| | - Zhenhua Lu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
- Department of Epidemiology, Public Health School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China
| | - Longyu Chen
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Xushen Ding
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Jingyu Pan
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Chenchen Hu
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Shuya Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Dongbo Jiang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| | - Kun Yang
- Department of Immunology, Basic Medicine School, Air-Force Medical University (the Fourth Military Medical University), Xi’an 710032, China; (B.S.); (J.Z.); (J.W.); (Y.L.); (H.S.); (Z.L.); (L.C.); (X.D.); (J.P.); (C.H.); (S.Y.)
| |
Collapse
|