1
|
Natalicchio A, Marrano N, Montagnani M, Gallo M, Faggiano A, Zatelli MC, Argentiero A, Del Re M, D'Oronzo S, Fogli S, Franchina T, Giuffrida D, Gori S, Ragni A, Marino G, Mazzilli R, Monami M, Morviducci L, Renzelli V, Russo A, Sciacca L, Tuveri E, Cortellini A, Di Maio M, Candido R, Perrone F, Aimaretti G, Avogaro A, Silvestris N, Giorgino F. Glycemic control and cancer outcomes in oncologic patients with diabetes: an Italian Association of Medical Oncology (AIOM), Italian Association of Medical Diabetologists (AMD), Italian Society of Diabetology (SID), Italian Society of Endocrinology (SIE), Italian Society of Pharmacology (SIF) multidisciplinary critical view. J Endocrinol Invest 2024; 47:2915-2928. [PMID: 38935200 PMCID: PMC11549129 DOI: 10.1007/s40618-024-02417-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND Increasing evidence suggests that diabetes increases the risk of developing different types of cancer. Hyperinsulinemia, hyperglycemia and chronic inflammation, characteristic of diabetes, could represent possible mechanisms involved in cancer development in diabetic patients. At the same time, cancer increases the risk of developing new-onset diabetes, mainly caused by the use of specific anticancer therapies. Of note, diabetes has been associated with a ∼10% increase in mortality for all cancers in comparison with subjects who did not have diabetes. Diabetes is associated with a worse prognosis in patients with cancer, and more recent findings suggest a key role for poor glycemic control in this regard. Nevertheless, the association between glycemic control and cancer outcomes in oncologic patients with diabetes remains unsettled and poorly debated. PURPOSE The current review seeks to summarize the available evidence on the effect of glycemic control on cancer outcomes, as well as on the possibility that timely treatment of hyperglycemia and improved glycemic control in patients with cancer and diabetes may favorably affect cancer outcomes.
Collapse
Affiliation(s)
- A Natalicchio
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, I-70124, Bari, Italy
| | - N Marrano
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, I-70124, Bari, Italy
| | - M Montagnani
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Pharmacology, University of Bari Aldo Moro, Bari, Italy
| | - M Gallo
- Endocrinology and Metabolic Diseases Unit, Azienda Ospedaliero-Universitaria SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - A Faggiano
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - M C Zatelli
- Section of Endocrinology, Geriatrics and Internal Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - A Argentiero
- Medical Oncology Unit, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - M Del Re
- Department of Clinical and Experimental Medicine, University of Pisa, 55, Via Roma, 56126, Pisa, Italy
| | - S D'Oronzo
- Interdisciplinary Department of Medicine, University of Bari Aldo Moro, Bari, Italy
| | - S Fogli
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - T Franchina
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - D Giuffrida
- Department of Oncology, Istituto Oncologico del Mediterraneo, Viagrande, Catania, Italy
| | - S Gori
- Oncologia Medica, IRCCS Don Calabria-Sacro Cuore Hospital, Negrar, Verona, Italy
| | - A Ragni
- Endocrinology and Metabolic Diseases Unit, Azienda Ospedaliero-Universitaria SS Antonio e Biagio e Cesare Arrigo of Alessandria, Alessandria, Italy
| | - G Marino
- Internal Medicine Department, Ospedale dei Castelli, Asl Roma 6, Ariccia, Rome, Italy
| | - R Mazzilli
- Endocrinology Unit, Department of Clinical & Molecular Medicine, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - M Monami
- Diabetology, Careggi Hospital and University of Florence, Florence, Italy
| | - L Morviducci
- Diabetology and Nutrition Unit, Department of Medical Specialties, ASL Roma 1 - S. Spirito Hospital, Rome, Italy
| | - V Renzelli
- Diabetologist and Endocrinologist, Italian Association of Clinical Diabetologists, Rome, Italy
| | - A Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - L Sciacca
- Department of Clinical and Experimental Medicine, Endocrinology Section, University of Catania, Catania, Italy
| | - E Tuveri
- Diabetology, Endocrinology and Metabolic Diseases Service, ASL-Sulcis, Carbonia, Italy
| | - A Cortellini
- Operative Research Unit of Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, 00128, Rome, Italy
- Department of Medicine and Surgery, Universitá Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128, Rome, Italy
- Department of Surgery and Cancer, Hammersmith Hospital Campus, Imperial College London, London, UK
| | - M Di Maio
- Department of Oncology, University of Turin, AOU Città Della Salute e della Scienza di Torino, Turin, Italy
| | - R Candido
- Department of Medical Surgical and Health Sciences, University of Trieste, 34149, Trieste, Italy
| | - F Perrone
- Clinical Trials Unit, National Cancer Institute, Naples, Italy
| | - G Aimaretti
- Endocrinology, Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - A Avogaro
- Department of Medicine, Section of Diabetes and Metabolic Diseases, University of Padova, Padua, Italy
| | - N Silvestris
- Medical Oncology Unit, Department of Human Pathology "G. Barresi", University of Messina, Messina, Italy
| | - F Giorgino
- Department of Precision and Regenerative Medicine and Ionian Area, Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, I-70124, Bari, Italy.
| |
Collapse
|
2
|
Zhou XD, Targher G, Byrne CD, Somers V, Kim SU, Chahal CAA, Wong VWS, Cai J, Shapiro MD, Eslam M, Steg PG, Sung KC, Misra A, Li JJ, Brotons C, Huang Y, Papatheodoridis GV, Sun A, Yilmaz Y, Chan WK, Huang H, Méndez-Sánchez N, Alqahtani SA, Cortez-Pinto H, Lip GYH, de Knegt RJ, Ocama P, Romero-Gomez M, Fudim M, Sebastiani G, Son JW, Ryan JD, Ikonomidis I, Treeprasertsuk S, Pastori D, Lupsor-Platon M, Tilg H, Ghazinyan H, Boursier J, Hamaguchi M, Nguyen MH, Fan JG, Goh GBB, Al Mahtab M, Hamid S, Perera N, George J, Zheng MH. An international multidisciplinary consensus statement on MAFLD and the risk of CVD. Hepatol Int 2023; 17:773-791. [PMID: 37204656 PMCID: PMC10198034 DOI: 10.1007/s12072-023-10543-8] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
BACKGROUND Fatty liver disease in the absence of excessive alcohol consumption is an increasingly common condition with a global prevalence of ~ 25-30% and is also associated with cardiovascular disease (CVD). Since systemic metabolic dysfunction underlies its pathogenesis, the term metabolic (dysfunction)-associated fatty liver disease (MAFLD) has been proposed for this condition. MAFLD is closely intertwined with obesity, type 2 diabetes mellitus and atherogenic dyslipidemia, which are established cardiovascular risk factors. Unlike CVD, which has received attention in the literature on fatty liver disease, the CVD risk associated with MAFLD is often underestimated, especially among Cardiologists. METHODS AND RESULTS A multidisciplinary panel of fifty-two international experts comprising Hepatologists, Endocrinologists, Diabetologists, Cardiologists and Family Physicians from six continents (Asia, Europe, North America, South America, Africa and Oceania) participated in a formal Delphi survey and developed consensus statements on the association between MAFLD and the risk of CVD. Statements were developed on different aspects of CVD risk, ranging from epidemiology to mechanisms, screening, and management. CONCULSIONS The expert panel identified important clinical associations between MAFLD and the risk of CVD that could serve to increase awareness of the adverse metabolic and cardiovascular outcomes of MAFLD. Finally, the expert panel also suggests potential areas for future research.
Collapse
Affiliation(s)
- Xiao-Dong Zhou
- Department of Cardiovascular Medicine, The Heart Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Giovanni Targher
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, and University of Southampton, Southampton General Hospital, Southampton, UK
| | - Virend Somers
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, USA
| | - Seung Up Kim
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, South Korea
| | - C Anwar A Chahal
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, USA
- Center for Inherited Cardiovascular Diseases, WellSpan Health, Lancaster, PA, USA
- Barts Heart Centre, St Bartholomew's Hospital, Barts Health NHS Trust, London, EC1A 7BE, West Smithfield, UK
| | - Vincent Wai-Sun Wong
- State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section on Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, 2145, Australia
| | - Philippe Gabriel Steg
- Université Paris -Cité, Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, FACT (French Alliance for Cardiovascular Trials), INSERM U1148, Paris, France
| | - Ki-Chul Sung
- Department of Internal Medicine, Division of Cardiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Anoop Misra
- Fortis C-DOC Centre of Excellence for Diabetes, Metabolic Diseases and Endocrinology, Chirag Enclave, National Diabetes Obesity and Cholesterol Foundation and Diabetes Foundation (India), New Delhi, India
| | - Jian-Jun Li
- State Key Laboratory of Cardiovascular Diseases, Fu Wai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Carlos Brotons
- Biomedical Research Institute Sant Pau (IIB Sant Pau), Sardenya Primary Health Care Center, Barcelona, Spain
| | - Yuli Huang
- Department of Cardiology, Shunde Hospital, Southern Medical University, Jiazi Road, Lunjiao Town, Shunde District, Foshan, China
| | - George V Papatheodoridis
- Department of Gastroenterology, Medical School of National and Kapodistrian University of Athens, General Hospital of Athens "Laiko", Athens, Greece
| | - Aijun Sun
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yusuf Yilmaz
- Institute of Gastroenterology, Marmara University, Istanbul, Turkey
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Wah Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025 Shennan Middle Road, Shenzhen, China
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic and Foundation and Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Saleh A Alqahtani
- Liver Transplantation Unit, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD, USA
| | - Helena Cortez-Pinto
- Laboratório de Nutrição e Metabolismo, Faculdade de Medicina, Clínica Universitária de Gastrenterologia, Universidade de Lisboa, Lisbon, Portugal
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart and Chest Hospital, Liverpool, UK
- Danish Center for Clinical Health Services Research, Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Gravendijkwal 230, Room Ha 206, Rotterdam, The Netherlands
| | - Ponsiano Ocama
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Manuel Romero-Gomez
- Department of Digestive and Liver Diseases, Institute of Biomedicine of Seville, University Hospital Virgen del Rocio, University of Seville, Seville, Spain
| | - Marat Fudim
- Department of Cardiology, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, Chronic Viral Illness Service, McGill University Health Centre, Royal Victoria Hospital, 1001 Blvd. Décarie, Montreal, Canada
| | - Jang Won Son
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - John D Ryan
- Department of Hepatology, RCSI School of Medicine and Medical Sciences, Dublin/Beaumont Hospital, Dublin, Ireland
| | - Ignatios Ikonomidis
- Preventive Cardiology Laboratory and Cardiometabolic Clinic, Second Cardiology Department, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sombat Treeprasertsuk
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Daniele Pastori
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome, Italy
| | - Monica Lupsor-Platon
- Department of Medical Imaging, "Prof. Dr. Octavian Fodor" Regional Institute of Gastroenterology and Hepathology, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology and Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Hasmik Ghazinyan
- Department of Hepatology, Nork Clinical Hospital of Infectious Disease, Yerevan, Armenia
| | - Jerome Boursier
- Hepato-Gastroenterology Department, University Hospital, 4 Larrey Street, 49933, Angers Cedex 09, France
- HIFIH Laboratory, UPRES 3859, SFR 4208, LUNAM University, Angers, France
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465, Kajii-Cho, Kawaramachi-Hirokoji, Kamigyo-Ku, Kyoto, Japan
| | - Mindie H Nguyen
- Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
- Department of Epidemiology and Population Health, Stanford University Medical Center, Palo Alto, CA, USA
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - George Boon-Bee Goh
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Mamun Al Mahtab
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Saeed Hamid
- Department of Medicine, Aga Khan University, Stadium Road, Karachi, 74800, Pakistan
| | - Nilanka Perera
- Department of Medicine, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, 2145, Australia.
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, No. 2 Fuxue Lane, Wenzhou, 325000, China.
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
3
|
Fernández MI. Urothelkarzinom der Harnblase: Epidemiologie, Ätiologie und Risikofaktoren. DIE UROLOGIE 2023:763-769. [DOI: 10.1007/978-3-662-63400-4_104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Zhou XD, Cai J, Targher G, Byrne CD, Shapiro MD, Sung KC, Somers VK, Chahal CAA, George J, Chen LL, Zhou Y, Zheng MH. Metabolic dysfunction-associated fatty liver disease and implications for cardiovascular risk and disease prevention. Cardiovasc Diabetol 2022; 21:270. [PMID: 36463192 PMCID: PMC9719631 DOI: 10.1186/s12933-022-01697-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
The newly proposed term "metabolic dysfunction-associated fatty liver disease" (MAFLD) is replacing the old term "non-alcoholic fatty liver disease" (NAFLD) in many global regions, because it better reflects the pathophysiology and cardiometabolic implications of this common liver disease. The proposed change in terminology from NAFLD to MAFLD is not simply a single-letter change in an acronym, since MAFLD is defined by a set of specific and positive diagnostic criteria. In particular, the MAFLD definition specifically incorporates within the classification recognized cardiovascular risk factors. Although convincing evidence supports a significant association between both NAFLD and MAFLD, with increased risk of CVD morbidity and mortality, neither NAFLD nor MAFLD have received sufficient attention from the Cardiology community. In fact, there is a paucity of scientific guidelines focusing on this common and burdensome liver disease from cardiovascular professional societies. This Perspective article discusses the rationale and clinical relevance for Cardiologists of the newly proposed MAFLD definition.
Collapse
Affiliation(s)
- Xiao-Dong Zhou
- Department of Cardiovascular Medicine, the Heart Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Cai
- Department of Cardiology, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Giovanni Targher
- Department of Medicine, Section of Endocrinology, Diabetes, and Metabolism, University of Verona, Verona, Italy
| | - Christopher D Byrne
- Southampton National Institute for Health and Care Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Michael D Shapiro
- Center for Prevention of Cardiovascular Disease, Section On Cardiovascular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ki-Chul Sung
- Department of Internal Medicine, Division of Cardiology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Virend K Somers
- Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, USA
| | - C Anwar A Chahal
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Li-Li Chen
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yong Zhou
- Clinical Research Institute, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ming-Hua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China.
- Key Laboratory of Diagnosis and Treatment for the Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, China.
| |
Collapse
|
5
|
Lobo N, Afferi L, Moschini M, Mostafid H, Porten S, Psutka SP, Gupta S, Smith AB, Williams SB, Lotan Y. Epidemiology, Screening, and Prevention of Bladder Cancer. Eur Urol Oncol 2022; 5:628-639. [PMID: 36333236 DOI: 10.1016/j.euo.2022.10.003] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/09/2022] [Accepted: 10/10/2022] [Indexed: 11/05/2022]
Abstract
CONTEXT Bladder cancer (BC) represents a significant health problem due to the potential morbidity and mortality associated with disease burden, which has remained largely unaltered over time. OBJECTIVE To provide an expert collaborative review and describe the incidence, prevalence, and mortality of BC and to evaluate current evidence for BC screening and prevention. EVIDENCE ACQUISITION Data on the estimated incidence and mortality of BC for 2020 in 185 countries were derived from the International Agency for Research on Cancer GLOBOCAN database. A review of English-language articles published over the past 5 yr was conducted using PubMed/MEDLINE to identify risk factors in addition to contemporary evidence on BC screening and prevention. EVIDENCE SYNTHESIS BC is the tenth most common cancer worldwide, with 573 278 cases in 2020. BC incidence is approximately fourfold higher in men than women. Tobacco smoking remains the principal risk factor, accounting for approximately 50% of cases. There is insufficient evidence to recommend routine BC screening. However, targeted screening of high-risk individuals (defined according to smoking history or occupational exposure) may reduce BC mortality and should be the focus of prospective randomized trials. In terms of disease prevention, smoking cessation represents the most important intervention, followed by a reduction in exposure to occupational and environmental carcinogens. CONCLUSIONS BC confers a significant disease burden. An understanding of BC epidemiology and risk factors provides an optimal foundation for disease prevention and the care of affected patients. PATIENT SUMMARY Bladder cancer is the tenth most common cancer worldwide and is approximately four times more common among men than among women. The main risk factors are tobacco smoking, followed by exposure to carcinogens in the workplace or the environment. Routine screening is not currently recommended, but may be beneficial in individuals at high risk, such as heavy smokers. Primary prevention is extremely important, and smoking cessation represents the most important action for reducing bladder cancer cases and deaths.
Collapse
Affiliation(s)
- Niyati Lobo
- Royal Surrey NHS Foundation Trust, Guildford, UK
| | | | - Marco Moschini
- Urological Research Institute, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Sima Porten
- University of California-San Francisco, San Francisco, CA, USA
| | - Sarah P Psutka
- University of Washington, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | | | - Angela B Smith
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | | | - Yair Lotan
- University of Texas Southwestern Medical Centre, Dallas, TX, USA.
| |
Collapse
|
6
|
Morgan HJ, Rees E, Lanfredini S, Powell KA, Gore J, Gibbs A, Lovatt C, Davies GE, Olivero C, Shorning BY, Tornillo G, Tonks A, Darley R, Wang EC, Patel GK. CD200 ectodomain shedding into the tumor microenvironment leads to NK cell dysfunction and apoptosis. J Clin Invest 2022; 132:150750. [PMID: 36074574 PMCID: PMC9621138 DOI: 10.1172/jci150750] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The basis of immune evasion, a hallmark of cancer, can differ even when cancers arise from one cell type such as in the human skin keratinocyte carcinomas: basal and squamous cell carcinoma. Here we showed that the basal cell carcinoma tumor-initiating cell surface protein CD200, through ectodomain shedding, was responsible for the near absence of NK cells within the basal cell carcinoma tumor microenvironment. In situ, CD200 underwent ectodomain shedding by metalloproteinases MMP3 and MMP11, which released biologically active soluble CD200 into the basal cell carcinoma microenvironment. CD200 bound its cognate receptor on NK cells to suppress MAPK pathway signaling that in turn blocked indirect (IFN-γ release) and direct cell killing. In addition, reduced ERK phosphorylation relinquished negative regulation of PPARγ-regulated gene transcription and led to membrane accumulation of the Fas/FADD death receptor and its ligand, FasL, which resulted in activation-induced apoptosis. Blocking CD200 inhibition of MAPK or PPARγ signaling restored NK cell survival and tumor cell killing, with relevance to many cancer types. Our results thus uncover a paradigm for CD200 as a potentially novel and targetable NK cell-specific immune checkpoint, which is responsible for NK cell-associated poor outcomes in many cancers.
Collapse
Affiliation(s)
- Huw J Morgan
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Elise Rees
- European Cancer Stem Cell Research Institute, School of Biosciences
| | | | - Kate A Powell
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Jasmine Gore
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Alex Gibbs
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Charlotte Lovatt
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Gemma E Davies
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Carlotta Olivero
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Boris Y Shorning
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Giusy Tornillo
- European Cancer Stem Cell Research Institute, School of Biosciences
| | - Alex Tonks
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, and
| | - Richard Darley
- Department of Haematology, Division of Cancer & Genetics, School of Medicine, and
| | - Eddie Cy Wang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Girish K Patel
- European Cancer Stem Cell Research Institute, School of Biosciences
| |
Collapse
|
7
|
Rhee EJ. Extra-Glycemic Effects of Anti-Diabetic Medications: Two Birds with One Stone? Endocrinol Metab (Seoul) 2022; 37:415-429. [PMID: 35798548 PMCID: PMC9262696 DOI: 10.3803/enm.2022.304] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/07/2022] [Accepted: 06/12/2022] [Indexed: 11/16/2022] Open
Abstract
The world is suffering from a rapid increase in the number of people with diabetes due to the increased prevalence of obesity and lengthened life span. Since the development of insulin thanks to the efforts of Prof. Banting and Dr. Best in 1922, for which they won the Nobel Prize, remarkable developments in anti-diabetic medications have dramatically lengthened the lifespan of patients with diabetes. However, the control rate of hyperglycemia in patients with diabetes remains unsatisfactory, since glycemic control requires both medication and lifestyle modifications to slow the deterioration of pancreatic beta-cell function and prevent diabetic complications. From the initial "triumvirate" to the "ominous octet," and now the "egregious eleven," the number of organs recognized as being involved in hyperglycemia and diabetes has increased with the development of anti-diabetic medications. Recent unexpected results from outcome trials of anti-diabetic medications have enabled anti-diabetic medications to be indicated for the prevention of chronic kidney disease and heart failure, even in patients without diabetes. In this review, I would like to summarize the extra-glycemic effects of anti-diabetic medications.
Collapse
Affiliation(s)
- Eun-Jung Rhee
- Department of Endocrinology and Metabolism, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
8
|
Papaetis GS. Pioglitazone, Bladder Cancer and the Presumption of Innocence. Curr Drug Saf 2022; 17:294-318. [PMID: 35249505 DOI: 10.2174/1574886317666220304124756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/01/2021] [Accepted: 12/21/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Thiazolidinediones are potent exogenous agonists of PPAR-γ, which augment the effects of insulin to its cellular targets and mainly at the level of adipose tissue. Pioglitazone, the main thiazolidinedione in clinical practice, has shown cardiovascular and renal benefits in patients with type 2 diabetes, durable reduction of glycated hemoglobulin levels, important improvements of several components of the metabolic syndrome and beneficial effects of non-alcoholic fatty liver disease. OBJECTIVE Despite all of its established advantages, the controversy for an increased risk of developing bladder cancer, combined with the advent of newer drug classes that achieved major cardiorenal effects have significantly limited its use spreading a persistent shadow of doubt for its future role. METHODS Pubmed, Google and Scope databases have been thoroughly searched and relevant studies were selected. RESULTS This paper explores thoroughly both in vitro and in vivo (animal models and humans) studies that investigated the possible association of pioglitazone with bladder cancer. CONCLUSION Currently the association of pioglitazone with bladder cancer cannot be based on solid evidence. This evidence cannot justify its low clinical administration, especially in the present era of individualised treatment strategies. Definite clarification of this issue is imperative and urgently anticipated from future high quality and rigorous pharmacoepidemiologic research, keeping in mind its unique mechanism of action and its significant pleiotropic effects.
Collapse
Affiliation(s)
- Georgios S Papaetis
- Internal Medicine and Diabetes Clinic, Eleftherios Venizelos Avenue 62, Paphos, Cyprus.
- CDA College, 73 Democratias Avenue, Paphos, Cyprus
| |
Collapse
|
9
|
Fernández MI. Urothelkarzinom der Harnblase: Epidemiologie, Ätiologie und Risikofaktoren. DIE UROLOGIE 2022:1-7. [DOI: 10.1007/978-3-642-41168-7_104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 05/21/2021] [Indexed: 09/02/2023]
|
10
|
Fouad Y, Esmat G, Elwakil R, Zakaria S, Yosry A, Waked I, El-Razky M, Doss W, El-Serafy M, Mostafa E, Anees M, Sakr MA, AbdelAty N, Omar A, Zaki S, Al-zahaby A, Mahfouz H, Abdalla M, Albendary M, Hamed AK, Gomaa A, Hasan A, Abdel-baky S, El sahhar M, Shiha G, Attia D, Saeed E, Kamal E, Bazeed S, Mehrez M, Abdelaleem S, Gaber Y, Abdallah M, Salama A, Tawab DA, Nafady S. The egyptian clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Saudi J Gastroenterol 2022; 28:3-20. [PMID: 35083973 PMCID: PMC8919931 DOI: 10.4103/sjg.sjg_357_21] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/24/2021] [Accepted: 10/31/2021] [Indexed: 11/04/2022] Open
Abstract
The landscape of chronic liver disease in Egypt has drastically changed over the past few decades. The prevalence of metabolic-associated fatty liver disease (MAFLD) has risen to alarming levels. Despite the magnitude of the problem, no regional guidelines have been developed to tackle this disease. This document provides the clinical practice guidelines of the key Egyptian opinion leaders on MAFLD screening, diagnosis, and management, and covers various aspects in the management of MAFLD. The document considers our local situations and the burden of clinical management for the healthcare sector and is proposed for daily clinical practical use. Particular reference to special groups was done whenever necessary.
Collapse
Affiliation(s)
- Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Reda Elwakil
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Serag Zakaria
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ayman Yosry
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Imam Waked
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebeen El Kom, Egypt
| | - Maissa El-Razky
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Wahid Doss
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Magdy El-Serafy
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Mahmood Anees
- Department of Gastroenterology and Hepatology, Tanta, Egypt
| | - Mohamed A. Sakr
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nadia AbdelAty
- Tropical Medicine Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ashraf Omar
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samy Zaki
- Department of Hepatogastroenterology and Infectious Diseases, Al-Azhar University, Cairo, Egypt
| | - Amgad Al-zahaby
- Department of Hepatogastroenterology and Infectious Diseases, Al-Azhar University, Cairo, Egypt
| | - Hamdy Mahfouz
- Department of Hepatogastroenterology and Infectious Diseases, Al-Azhar University, Assuit, Egypt
| | - Maysaa Abdalla
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mahmoud Albendary
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Mansura University, Mansura, Egypt
| | - Abdel-Khalek Hamed
- Department of Internal Medicine, Hepatology, and Diabetes, Egyptian Military Medical Academy, Cairo, Egypt
| | - Ahmed Gomaa
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Adel Hasan
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Suez Canal University, Suez, Egypt
| | - Sherif Abdel-baky
- Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Medhat El sahhar
- Egyptian Association for the Study of Liver and Gastrointestinal Disease (EASLGD), Police Medical Academy, Cairo, Egypt
| | - Gamal Shiha
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Dina Attia
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Ebada Saeed
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Benha University, Benha, Egypt
| | - Enas Kamal
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Cairo, Egypt
| | - Shamardan Bazeed
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Mai Mehrez
- Department of Hepatology, NTHMRI, Cairo, Egypt
| | - Shereen Abdelaleem
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Yasmine Gaber
- Department of Endemic Medicine and Hepatology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed Abdallah
- Department of Medical Research Division Medicine, National Research Centre, Giza, Egypt
| | - Asmaa Salama
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| | - Doaa A. Tawab
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assuit University, Assuit, Egypt
| | - Shaymaa Nafady
- Department of Gastroenterology, Hepatology and Infectious Diseases, Faculty of Medicine, Beni-Suef University, Beni Suef, Egypt
| |
Collapse
|
11
|
Santos-Laso A, Gutiérrez-Larrañaga M, Alonso-Peña M, Medina JM, Iruzubieta P, Arias-Loste MT, López-Hoyos M, Crespo J. Pathophysiological Mechanisms in Non-Alcoholic Fatty Liver Disease: From Drivers to Targets. Biomedicines 2021; 10:biomedicines10010046. [PMID: 35052726 PMCID: PMC8773141 DOI: 10.3390/biomedicines10010046] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by the excessive and detrimental accumulation of liver fat as a result of high-caloric intake and/or cellular and molecular abnormalities. The prevalence of this pathological event is increasing worldwide, and is intimately associated with obesity and type 2 diabetes mellitus, among other comorbidities. To date, only therapeutic strategies based on lifestyle changes have exhibited a beneficial impact on patients with NAFLD, but unfortunately this approach is often difficult to implement, and shows poor long-term adherence. For this reason, great efforts are being made to elucidate and integrate the underlying pathological molecular mechanism, and to identify novel and promising druggable targets for therapy. In this regard, a large number of clinical trials testing different potential compounds have been performed, albeit with no conclusive results yet. Importantly, many other clinical trials are currently underway with results expected in the near future. Here, we summarize the key aspects of NAFLD pathogenesis and therapeutic targets in this frequent disorder, highlighting the most recent advances in the field and future research directions.
Collapse
Affiliation(s)
- Alvaro Santos-Laso
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- Correspondence: (A.S.-L.); (J.C.)
| | - María Gutiérrez-Larrañaga
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Marta Alonso-Peña
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Juan M. Medina
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
| | - Paula Iruzubieta
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - María Teresa Arias-Loste
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Marcos López-Hoyos
- Department of Immunology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.G.-L.); (M.L.-H.)
| | - Javier Crespo
- Department of Gastroenterology and Hepatology, Marqués de Valdecilla University Hospital, Valdecilla Biomedical Research Institute (IDIVAL), 39008 Santander, Spain; (M.A.-P.); (J.M.M.); (P.I.); (M.T.A.-L.)
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), 28029 Madrid, Spain
- Correspondence: (A.S.-L.); (J.C.)
| |
Collapse
|
12
|
Kotwal A, Cheung YMM, Cromwell G, Drincic A, Leblebjian H, Quandt Z, Rushakoff RJ, McDonnell ME. Patient-Centered Diabetes Care of Cancer Patients. Curr Diab Rep 2021; 21:62. [PMID: 34902069 DOI: 10.1007/s11892-021-01435-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW There is a bidirectional relationship between cancer and diabetes, with one condition influencing the prognosis of the other. Multiple cancer therapies cause diabetes including well-established medications such as glucocorticoids and novel cancer therapies such as immune checkpoint inhibitors (CPIs) and phosphoinositide 3-kinase (PI3K) inhibitors. RECENT FINDINGS The nature and severity of diabetes caused by each therapy differ, with some predominantly mediated by insulin resistance, such as PI3K inhibitors and glucocorticoids, while others by insulin deficiency, such as CPIs. Studies have demonstrated diabetes from CPIs to be more rapidly progressing than conventional type 1 diabetes. There remains a scarcity of published guidance for the screening, diagnosis, and management of hyperglycemia and diabetes from these therapies. The need for such guidance is critical because diabetes management in the cancer patient is complex, individualized, and requires inter-disciplinary care. In the present narrative review, we synthesize and summarize the most relevant literature pertaining to diabetes and hyperglycemia in the setting of these cancer therapies and provide an updated patient-centered framework for their evaluation and management.
Collapse
Affiliation(s)
- Anupam Kotwal
- Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yee-Ming M Cheung
- Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA
| | - Grace Cromwell
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA
| | - Andjela Drincic
- Division of Diabetes, Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
| | - Houry Leblebjian
- Department of Pharmacy, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Zoe Quandt
- Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA
| | - Robert J Rushakoff
- Division of Endocrinology and Metabolism, University of California, San Francisco, CA, USA
| | - Marie E McDonnell
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, MA, 02115, USA.
| |
Collapse
|
13
|
Cheung A, Ahmed A. Nonalcoholic Fatty Liver Disease and Chronic Kidney Disease: A Review of Links and Risks. Clin Exp Gastroenterol 2021; 14:457-465. [PMID: 34819740 PMCID: PMC8607580 DOI: 10.2147/ceg.s226130] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
Nonalcoholic fatty liver disease and chronic kidney disease are both chronic conditions with rapidly increasing prevalence and incidence worldwide that have led to a significant burden on health-care systems. The association between these two disease entities is partly attributed to shared cardiometabolic comorbidities including diabetes, hypertension, obesity, and metabolic syndrome. However, independent of these overlapping risks, there are increased rates and more severe CKD in NAFLD patients. Conversely, more progressive NAFLD is seen with advanced stages of kidney injury. In addition to overlapping risk factors, shared pathogenic mechanisms suggest these two disease entities may resemble different manifestations of a single underlying disease process.
Collapse
Affiliation(s)
- Amanda Cheung
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
14
|
Kharechkina ES, Nikiforova AB, Belosludtsev KN, Rokitskaya TI, Antonenko YN, Kruglov AG. Pioglitazone Is a Mild Carrier-Dependent Uncoupler of Oxidative Phosphorylation and a Modulator of Mitochondrial Permeability Transition. Pharmaceuticals (Basel) 2021; 14:ph14101045. [PMID: 34681269 PMCID: PMC8537895 DOI: 10.3390/ph14101045] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/17/2022] Open
Abstract
Pioglitazone (PIO) is an insulin-sensitizing antidiabetic drug, which normalizes glucose and lipid metabolism but may provoke heart and liver failure and chronic kidney diseases. Both therapeutic and adverse effects of PIO can be accomplished through mitochondrial targets. Here, we explored the capability of PIO to modulate the mitochondrial membrane potential (ΔΨm) and the permeability transition pore (mPTP) opening in different models in vitro. ΔΨm was measured using tetraphenylphosphonium and the fluorescent dye rhodamine 123. The coupling of oxidative phosphorylation was estimated polarographically. The transport of ions and solutes across membranes was registered by potentiometric and spectral techniques. We found that PIO decreased ΔΨm in isolated mitochondria and intact thymocytes and the efficiency of ADP phosphorylation, particularly after the addition of Ca2+. The presence of the cytosolic fraction mitigated mitochondrial depolarization but made it sustained. Carboxyatractyloside diminished the PIO-dependent depolarization. PIO activated proton transport in deenergized mitochondria but not in artificial phospholipid vesicles. PIO had no effect on K+ and Ca2+ inward transport but drastically decreased the mitochondrial Ca2+-retention capacity and protective effects of adenine nucleotides against mPTP opening. Thus, PIO is a mild, partly ATP/ADP-translocase-dependent, uncoupler and a modulator of ATP production and mPTP sensitivity to Ca2+ and adenine nucleotides. These properties contribute to both therapeutic and adverse effects of PIO.
Collapse
Affiliation(s)
- Ekaterina S. Kharechkina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.S.K.); (A.B.N.); (K.N.B.)
| | - Anna B. Nikiforova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.S.K.); (A.B.N.); (K.N.B.)
| | - Konstantin N. Belosludtsev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.S.K.); (A.B.N.); (K.N.B.)
- Mari State University, pl. Lenina 1, 424001 Yoshkar-Ola, Russia
| | - Tatyana I. Rokitskaya
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.I.R.); (Y.N.A.)
| | - Yuri N. Antonenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (T.I.R.); (Y.N.A.)
| | - Alexey G. Kruglov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Institutskaya 3, 142290 Pushchino, Russia; (E.S.K.); (A.B.N.); (K.N.B.)
- Correspondence: ; Tel.: +7-4967-739107
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To summarize recent evidence demonstrating increased cardiovascular disease (CVD) risk, and how CVD risk may be reduced, in patients with nonalcoholic fatty liver disease (NAFLD). RECENT FINDINGS NAFLD is a multisystem disease, defined by a spectrum of liver fat-associated conditions extending from simple steatosis, to inflammation, fibrosis and cirrhosis. NAFLD not only increases the risk of liver morbidity and mortality but also increases the risk of CVD morbidity and mortality and is associated with recognized CVD risk factors such as hypertension, atherogenic dyslipidaemia, type 2 diabetes mellitus and chronic kidney disease. Evidence suggests that the liver fibrosis stage may be a strong CVD risk factor. Lifestyle measures (e.g. weight loss and increased physical activity) are effective in improving CVD risk factors. Hypoglycaemic agents, such as the peroxisome proliferator-activated receptor gamma agonist pioglitazone and the glucagon-like peptide-1 receptor agonist liraglutide, reduce cardiovascular risk and may improve liver histology. Statin and antihypertensive treatments are well tolerated and currently it is unclear whether novel antifibrotic drugs will reduce CVD risk. SUMMARY Assessment and treatment of increased cardiovascular risk is important in patients with NAFLD. If not contra-indicated, pioglitazone or a glucagon-like peptide 1 agonist should be considered and may benefit both CVD risk and early liver disease.
Collapse
Affiliation(s)
- Michael P Johnston
- Department of Gastroenterology, Glasgow Royal Infirmary, Glasgow, Scotland
| | - Janisha Patel
- Department of Hepatology, University Hospital Southampton
| | - Christopher D Byrne
- Nutrition and Metabolism, Faculty of Medicine, University of Southampton
- National Institute for Health Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, UK
| |
Collapse
|
16
|
Abstract
Our understanding of nonalcoholic fatty liver disease pathophysiology continues to advance rapidly. Accordingly, the field has moved from describing the clinical phenotype through the presence of nonalcoholic steatohepatitis (NASH) and degree of fibrosis to deep phenotyping with a description of associated comorbidities, genetic polymorphisms and environmental influences that could be associated with disease progression. These insights have fuelled a robust therapeutic pipeline across a variety of new targets to resolve steatohepatitis or reverse fibrosis, or both. Additionally, some of these therapies have beneficial effects that extend beyond the liver, such as effects on glycaemic control, lipid profile and weight loss. In addition, emerging therapies for NASH cirrhosis would have to demonstrate either reversal of fibrosis with associated reduction in portal hypertension or at least delay the progression with eventual decrease in liver-related outcomes. For non-cirrhotic NASH, it is the expectation that reversal of fibrosis by one stage or resolution of NASH with no worsening in fibrosis will need to be accompanied by overall survival benefits. In this Review, we summarize NASH therapies that have progressed to phase II and beyond. We also discuss some of the potential clinical challenges with the use of these new therapies when approved.
Collapse
|
17
|
Eslam M, Sarin SK, Wong VWS, Fan JG, Kawaguchi T, Ahn SH, Zheng MH, Shiha G, Yilmaz Y, Gani R, Alam S, Dan YY, Kao JH, Hamid S, Cua IH, Chan WK, Payawal D, Tan SS, Tanwandee T, Adams LA, Kumar M, Omata M, George J. The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatol Int 2020; 14:889-919. [PMID: 33006093 DOI: 10.1007/s12072-020-10094-2] [Citation(s) in RCA: 532] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/06/2020] [Indexed: 02/06/2023]
Abstract
Metabolic associated fatty liver disease (MAFLD) is the principal worldwide cause of liver disease and affects nearly a quarter of the global population. The objective of this work was to present the clinical practice guidelines of the Asian Pacific Association for the Study of the Liver (APASL) on MAFLD. The guidelines cover various aspects of MAFLD including its epidemiology, diagnosis, screening, assessment, and treatment. The document is intended for practical use and for setting the stage for advancing clinical practice, knowledge, and research of MAFLD in adults, with specific reference to special groups as necessary. The guidelines also seek to improve patient care and awareness of the disease and assist stakeholders in the decision-making process by providing evidence-based data. The guidelines take into consideration the burden of clinical management for the healthcare sector.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Vincent Wai-Sun Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital Affiliated To Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Takumi Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Ming-Hua Zheng
- Department of Hepatology, MAFLD Research Center, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, China
| | - Gamal Shiha
- Hepatology and Gastroenterology Unit, Internal Medicine Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
- Egyptian Liver Research Institute and Hospital (ELRIAH), Sherbin, El Mansoura, Egypt
| | - Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Marmara University, Istanbul, Turkey
- Institute of Gastroenterology, Marmara University, Istanbul, Turkey
| | - Rino Gani
- Department of Internal Medicine, Hepatobiliary Division, Dr. Cipto Mangunkusumo National General Hospital, Universitas Indonesia, Pangeran Diponegoro Road No. 71st, Central Jakarta, 10430, Indonesia
| | - Shahinul Alam
- Department of Hepatology, Bangabandhu Sheikh Mujib Medical University, Shahbag, Dhaka, Bangladesh
| | - Yock Young Dan
- Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore, Singapore
| | - Jia-Horng Kao
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, National Taiwan University, 1 Chang-Te Street, Taipei, 10002, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- Hepatitis Research Center, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
- Department of Medical Research, National Taiwan University, National Taiwan University Hospital, Taipei, Taiwan
| | - Saeed Hamid
- Department of Medicine, Aga Khan University, Karachi, Pakistan
| | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Diana Payawal
- Department of Medicine, Cardinal Santos Medical Center, Mandaluyong, Philippines
| | - Soek-Siam Tan
- Department of Hepatology, Selayang Hospital, Batu Caves, Malaysia
| | - Tawesak Tanwandee
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Leon A Adams
- Medical School, Faculty of Medicine and Health Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Manoj Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Central Hospital, Yamanashi, Japan
- University of Tokyo, Tokyo, Japan
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
18
|
Koufakis T, Grammatiki M, Kotsa K. Type 2 diabetes management in people aged over seventy-five years: targets and treatment strategies. Maturitas 2020; 143:118-126. [PMID: 33308617 DOI: 10.1016/j.maturitas.2020.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Older people (those aged 65 years or more) with diabetes comprise a heterogenous group of patients with special needs and features; this is particularly true for those aged 75 years or more. It is important that individualized glycemic targets be adopted in this population, after considering life expectancy, presence of diabetic complications and other comorbidities. In general, less rigorous targets and avoidance of overtreatment seems to be a reasonable strategy in daily clinical settings. There is a paucity of data regarding the efficacy and safety of various hypoglycemic agents, especially for those aged over 75. The evidence suggests that sulfonylureas and insulin regimens should be used with caution due to a high risk of hypoglycemia. Dipeptidyl peptidase-4 inhibitors are a good choice for the management of diabetes in older age groups, although a warning against the use of specific agents in people with heart failure is valid. There are insufficient data to decide whether the cardiorenal protective properties of sodium-glucose co-transporter 2 inhibitors outweigh the risks associated with these drugs. The use of glucagon-like peptide-1 receptor agonists by older patients is supported not only by their good safety and efficacy profiles, but also by their potential to improve glucose-independent outcomes, through their pleiotropic actions. The aim of this narrative review is to summarize the evidence on glycemic targets and optimal therapeutic approaches for older patients with type 2 diabetes and discuss the risk-benefit balance of various therapeutic approaches in this group.
Collapse
Affiliation(s)
- Theocharis Koufakis
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1 St. Kiriakidi Street, Thessaloniki, 54636, Greece
| | - Maria Grammatiki
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1 St. Kiriakidi Street, Thessaloniki, 54636, Greece
| | - Kalliopi Kotsa
- Division of Endocrinology and Metabolism and Diabetes Centre, First Department of Internal Medicine, Medical School, Aristotle University of Thessaloniki, AHEPA University Hospital, 1 St. Kiriakidi Street, Thessaloniki, 54636, Greece.
| |
Collapse
|
19
|
Justin A, Ashwini P, Jose JA, Jeyarani V, Dhanabal SP, Manisha C, Mandal SP, Bhavimani G, Prabitha P, Yuvaraj S, Prashantha Kumar BR. Two Rationally Identified Novel Glitazones Reversed the Behavioral Dysfunctions and Exhibited Neuroprotection Through Ameliorating Brain Cytokines and Oxy-Radicals in ICV-LPS Neuroinflammatory Rat Model. Front Neurosci 2020; 14:530148. [PMID: 33100954 PMCID: PMC7546828 DOI: 10.3389/fnins.2020.530148] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
The present study has planned to evaluate the neuroprotective activity of two novel glitazones in a neuroinflammatory rat model. Two novel glitazones were selected from an in-house virtual library of glitazones based on their docking scores against peroxisome proliferator-activated receptor-gamma (PPAR-γ) protein and other parameters studied in in silico computational studies. Initially, an acute oral toxicity study was carried out for glitazones in rats to assess the toxicity profile and to determine the therapeutic range for neuroprotective evaluation. Prior to induction of neuroinflammation, the treatments with glitazones (G1 and G2) and standard pioglitazone were made for four consecutive days to respective groups. On the fifth day, the neuroinflammation was induced by intracerebroventricular (ICV) administration of lipopolysaccharides (LPS) (2 μg/μl) using stereotaxic apparatus. After 7 days, the rats were subjected to behavioral assessment followed by neurobiochemical evaluation and histopathological studies. The pre-treatment with glitazones at two dose levels (15 and 30 mg/kg) has significantly reversed behavioral dysfunctions. Glitazones have shown significant reduction in the levels of LPO, NO, TNF-α, and IL-1β and also increased the levels of antioxidant enzymes such as SOD, CAT, and GSH in the brain of LPS-administered rats. The neuroprotection exhibited by two novel glitazones is comparable with standard pioglitazone. The PPAR-γ-dependent amelioration of cytokines and oxy-radicals released by novel glitazones during neuroinflammatory conditions may be attributed to the reversal of behavioral dysfunctions through preventing the degeneration of neurons in major regions of the brain.
Collapse
Affiliation(s)
- Antony Justin
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, India
| | - Premkumar Ashwini
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, India
| | - Jincy A Jose
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, India
| | - Victoria Jeyarani
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, India
| | - S P Dhanabal
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, India
| | - Chennu Manisha
- Department of Pharmacology, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Ooty, India
| | - Subhankar P Mandal
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, India
| | - Guru Bhavimani
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, India
| | - P Prabitha
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, India
| | - S Yuvaraj
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, India
| | - B R Prashantha Kumar
- Department of Pharmaceutical Chemistry, JSS Academy of Higher Education & Research, JSS College of Pharmacy, Mysuru, India
| |
Collapse
|
20
|
Zhang ZH, Yin L, Zhang LL, Song J. Efficacy and safety of Bacillus Calmette-Guerin for bladder cancer: A protocol of systematic review. Medicine (Baltimore) 2020; 99:e21930. [PMID: 32871933 PMCID: PMC7458172 DOI: 10.1097/md.0000000000021930] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND This study will systematically assess the efficacy and safety of Bacillus Calmette-Guerin (BCG) for patients with bladder cancer (BC). METHODS Literature searches will be performed in multiple electronic databases from inception to present: MEDLINE, EMBASE, CINAHL, Science Direct, Cochrane Library, Web of Science, and China National Knowledge Infrastructure. We will also examine grey literature through identifying conference proceedings, thesis, dissertations, and website of clinical trials registry. Two investigators will independently scan all citation titles, abstracts, and full-text studies. The study quality will be assessed by Cochrane Risk of Bias Tool. If possible, we will perform meta-analysis. Additional analyses will be carried out to test the potential sources of heterogeneity among included trials. RESULTS The present study will summarize high quality trials on investigating the efficacy and safety of BCG for patients with BC. CONCLUSION The results of this study will supply helpful evidence to determine whether BCG is effective or not for BC. STUDY REGISTRATION NUMBER INPLASY202070042.
Collapse
|
21
|
Lega IC, Lipscombe LL. Review: Diabetes, Obesity, and Cancer-Pathophysiology and Clinical Implications. Endocr Rev 2020; 41:5625127. [PMID: 31722374 DOI: 10.1210/endrev/bnz014] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Obesity and diabetes have both been associated with an increased risk of cancer. In the face of increasing obesity and diabetes rates worldwide, this is a worrying trend for cancer rates. Factors such as hyperinsulinemia, chronic inflammation, antihyperglycemic medications, and shared risk factors have all been identified as potential mechanisms underlying the relationship. The most common obesity- and diabetes-related cancers are endometrial, colorectal, and postmenopausal breast cancers. In this review, we summarize the existing evidence that describes the complex relationship between obesity, diabetes, and cancer, focusing on epidemiological and pathophysiological evidence, and also reviewing the role of antihyperglycemic agents, novel research approaches such as Mendelian Randomization, and the methodological limitations of existing research. In addition, we also describe the bidirectional relationship between diabetes and cancer with a review of the evidence summarizing the risk of diabetes following cancer treatment. We conclude this review by providing clinical implications that are relevant for caring for patients with obesity, diabetes, and cancer and provide recommendations for improving both clinical care and research for patients with these conditions.
Collapse
Affiliation(s)
- Iliana C Lega
- Department of Medicine, Women's College Hospital, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,IC/ES, Toronto, ON, Canada
| | - Lorraine L Lipscombe
- Department of Medicine, Women's College Hospital, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,IC/ES, Toronto, ON, Canada.,Institute for Health Policy, Management and Evaluation, University of Toronto; Toronto, ON, Canada
| |
Collapse
|
22
|
Suh S, Kim KW. Diabetes and Cancer: Cancer Should Be Screened in Routine Diabetes Assessment. Diabetes Metab J 2019; 43:733-743. [PMID: 31902143 PMCID: PMC6943263 DOI: 10.4093/dmj.2019.0177] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/17/2019] [Indexed: 12/16/2022] Open
Abstract
Cancer incidence appears to be increased in both type 1 and type 2 diabetes mellitus (DM). DM represents a risk factor for cancer, particularly hepatocellular, hepatobiliary, pancreas, breast, ovarian, endometrial, and gastrointestinal cancers. In addition, there is evidence showing that DM is associated with increased cancer mortality. Common risk factors such as age, obesity, physical inactivity and smoking may contribute to increased cancer risk in patients with DM. Although the mechanistic process that may link diabetes to cancer is not completely understood yet, biological mechanisms linking DM and cancer are hyperglycemia, hyperinsulinemia, increased bioactivity of insulin-like growth factor 1, oxidative stress, dysregulations of sex hormones, and chronic inflammation. However, cancer screening rate is significantly lower in people with DM than that in people without diabetes. Evidence from previous studies suggests that some medications used to treat DM are associated with either increased or reduced risk of cancer. However, there is no strong evidence supporting the association between the use of anti-hyperglycemic medication and specific cancer. In conclusion, all patients with DM should be undergo recommended age- and sex appropriate cancer screenings to promote primary prevention and early detection. Furthermore, cancer should be screened in routine diabetes assessment.
Collapse
Affiliation(s)
- Sunghwan Suh
- Department of Internal Medicine, Dong-A University College of Medicine, Busan, Korea
| | - Kwang Won Kim
- Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea.
| |
Collapse
|