1
|
Masuda S, Komatsu T, Atia S, Suzuki T, Hayashi M, Toyoda A, Kimura H, Inagaki T. Iron-Dependent JMJD1A-Mediated Demethylation of H3K9me2 Regulates Gene Expression During Adipogenesis in a Spatial Genome Organization-Dependent Manner. Genes Cells 2025; 30:e70023. [PMID: 40289791 PMCID: PMC12035669 DOI: 10.1111/gtc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/28/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Chromatin restructuring across multiple hierarchical scales directs lineage-specific gene expression during cell differentiation. Here, we investigated the iron-dependent demethylation of histone H3 lysine 9 dimethylation (H3K9me2) by the demethylase jumonji domain-containing 1A (JMJD1A) in adipocyte differentiation. Using the 3T3-L1 adipocyte differentiation model, we show that JMJD1A knockdown increases H3K9me2 levels, whereas forced expression of wild-type JMJD1A reduces H3K9me2 levels within the A compartment, as defined by megabase scale high-throughput chromosome conformation capture (Hi-C) data. In contrast, a JMJD1A mutant defective in iron coordination was unable to demethylate H3K9me2. Genome-wide analyses of H3K9me2 levels at transcription start sites on a kilobase scale demonstrated that JMJD1A targets genes involved in peroxisome proliferator-activated receptor signaling and lipid metabolism in an iron-dependent manner, supporting a model in which H3K9me2 demethylation facilitates adipogenic transcription networks. Furthermore, we examined the relationship between H3K9me2 and lamin B1 levels within lamina-associated domains (LADs) specifically reorganized during differentiation. Although LADs with higher H3K9me2 exhibited modestly elevated lamin B1 association in preadipocytes, lamin B1 levels declined during differentiation regardless of H3K9me2 status. These findings emphasize the importance of the iron-dependent enzymatic function in JMJD1A and broaden our understanding of how specific H3K9 demethylases coordinate compartmentalized epigenetic programs during adipogenesis.
Collapse
Affiliation(s)
- Shinnosuke Masuda
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Tetsuro Komatsu
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Safiya Atia
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Tomohiro Suzuki
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Mayuko Hayashi
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| | - Atsushi Toyoda
- Advanced Genomics CenterNational Institute of GeneticsMishimaJapan
| | - Hiroshi Kimura
- Cell Biology CenterInstitute of Integrated Research, Institute of Science TokyoYokohamaJapan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and MetabolismInstitute for Molecular and Cellular Regulation, Gunma UniversityMaebashiGunmaJapan
| |
Collapse
|
2
|
Xue C, Zhu S, Li Y, Chen X, Lu L, Su P, Zhang Q, Liu X, Guan R, Liu Z, Zhao Z, Tang S, Chen J, Zhang J, Zhang W, Lu H, Luo W. Cold exposure accelerates lysine catabolism to promote cold acclimation via remodeling hepatic histone crotonylation. ENVIRONMENT INTERNATIONAL 2024; 192:109015. [PMID: 39312841 DOI: 10.1016/j.envint.2024.109015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/29/2024] [Accepted: 09/14/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Cold environments pose serious threats on human health, with increased risk for myocardial infarction, stroke, frostbite, and hypothermia. Acquired cold acclimation is required to minimize cold-induced injures and to improve metabolic health. However, the underlying mechanisms remain to be fully elucidated. OBJECTIVE We aimed to identify critical amino acids involved in cold acclimation and unmask the regulatory mechanisms. METHODS A total of twenty male participants were recruited and followed up after 3 months' natural cold exposure. Cold-induced vasodilation (CIVD) tests and clinical biochemical analysis were performed at baseline and after 3-months cold exposure, whilst blood samples were collected, and plasma amino acids were analyzed by targeted metabolomics. To further confirm the effect of lysine on cold tolerance and explain the latent mechanism, mice were challenged with chronic cold exposure for 7 days with lysine supplement, then core and local surface temperature as well as thermogenesis activity were detected. RESULTS Continuous cold exposure shortened the CIVD onset time and increased the average finger temperature. Levels of the plasma lysine and glycine were decreased in both humans and mice. Venn analysis from three datasets revealed that lysine was the only significantly changed plasma amino acid, which strongly correlated with the altered CIVD. Moreover, mice sustained a relatively higher core temperature and surface temperature in the back, tail and paws upon lysine supplementation. Furthermore, lysine supplementation increased the level of histone H3K18cr and promoted the gene and protein expression of Cpt1a, Cpt2 and Cyp27a1 in liver. CONCLUSION Our work identified lysine as a critical amino acid for the remodeling of hepatic histone crotonylation that facilitates cold acclimation.
Collapse
Affiliation(s)
- Chong Xue
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Sijin Zhu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Yang Li
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaoming Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Liang Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Peng Su
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Qian Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Xinqin Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Ruili Guan
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zongcai Liu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Zhiwei Zhao
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Shan Tang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jingyuan Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Jianbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Wenbin Zhang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Huanyu Lu
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
3
|
Liu X, Zhang H, Zhang S, Mao W, Liu L, Deng C, Hu CH. Olanzapine-induced decreases of FGF21 in brown adipose tissue via histone modulations drive UCP1-dependent thermogenetic impairment. Prog Neuropsychopharmacol Biol Psychiatry 2023; 122:110692. [PMID: 36509252 DOI: 10.1016/j.pnpbp.2022.110692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Long-term olanzapine treatment has been associated with serious metabolism disorders, such as abnormal body weight gain, hyperglycemia, and dyslipidemia. Recently, accumulated evidence points to a link between the metabolic disorders caused by olanzapine and thermogenetic impairment. Fibroblast growth factor 21 (FGF21), a pleiotropic protein, is a potent stimulator of thermogenesis in brown adipose tissue (BAT). However, the relationship between autocrine FGF21 in BAT and thermogenetic impairment induced by olanzapine has not been investigated. In this study, C57BL/6 mice and C3H10T1/2 (a brown adipocyte cell line) were used to investigate the role of FGF21 in modulating thermogenetic impairments caused by olanzapine. Our data found a fall in BAT temperature, with a decrease in the protein levels of uncoupling protein 1 (UCP1) and FGF21 in olanzapine-treatment mice. Olanzapine-induced deficits of mitochondrial activity and the expression of UCP1 and related thermogenetic factors could be improved by FGF21-overexpression in brown adipocytes. Furthermore, ChIP-sequencing showed the H3K9me3 modification in Fgf21 was dramatically increased in BAT of mice with olanzapine treatment. Lysine-specific demethylase 4a (KDM4a), a histone demethylase responsible for site-specific erasure of H3K9me3, was decreased in olanzapine-treated C3H10T1/2 cells, whereas FGF21 and UCP1 expression and thermogenesis were upregulated in KMD2a-overexpressing brown adipocyte. We concluded that FGF21 was a crucial regulator mediating UCP1-dependent thermogenetic impairments by olanzapine-modulating histone methylations. Our results also provide novel insights into identifying a new therapeutic target for treating metabolic side effects caused by the antipsychotic drug.
Collapse
Affiliation(s)
- Xuemei Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Haotian Zhang
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Shimei Zhang
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Wenxing Mao
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China; Chongqing Institute for Food and Drug Control, NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, Chongqing 401121, PR China
| | - Lu Liu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Chao Deng
- School of Medical, Indigenous and Health Sciences, and Molecular Horizons, University of Wollongong, Wollongong, NSW, Australia; Antipsychotic Research Laboratory, Illawarra Health and Medical Research Institute, Wollongong 2522, NSW, Australia
| | - Chang-Hua Hu
- School of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Yang Y, Luan Y, Feng Q, Chen X, Qin B, Ren KD, Luan Y. Epigenetics and Beyond: Targeting Histone Methylation to Treat Type 2 Diabetes Mellitus. Front Pharmacol 2022; 12:807413. [PMID: 35087408 PMCID: PMC8788853 DOI: 10.3389/fphar.2021.807413] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus is a global public health challenge with high morbidity. Type 2 diabetes mellitus (T2DM) accounts for 90% of the global prevalence of diabetes. T2DM is featured by a combination of defective insulin secretion by pancreatic β-cells and the inability of insulin-sensitive tissues to respond appropriately to insulin. However, the pathogenesis of this disease is complicated by genetic and environmental factors, which needs further study. Numerous studies have demonstrated an epigenetic influence on the course of this disease via altering the expression of downstream diabetes-related proteins. Further studies in the field of epigenetics can help to elucidate the mechanisms and identify appropriate treatments. Histone methylation is defined as a common histone mark by adding a methyl group (-CH3) onto a lysine or arginine residue, which can alter the expression of downstream proteins and affect cellular processes. Thus, in tthis study will discuss types and functions of histone methylation and its role in T2DM wilsed. We will review the involvement of histone methyltransferases and histone demethylases in the progression of T2DM and analyze epigenetic-based therapies. We will also discuss the potential application of histone methylation modification as targets for the treatment of T2DM.
Collapse
Affiliation(s)
- Yang Yang
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Xing Chen
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Qin
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kai-Di Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yi Luan
- Department of Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Ramzan F, Vickers MH, Mithen RF. Epigenetics, microRNA and Metabolic Syndrome: A Comprehensive Review. Int J Mol Sci 2021; 22:ijms22095047. [PMID: 34068765 PMCID: PMC8126218 DOI: 10.3390/ijms22095047] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetics refers to the DNA chemistry changes that result in the modification of gene transcription and translation independently of the underlying DNA coding sequence. Epigenetic modifications are reported to involve various molecular mechanisms, including classical epigenetic changes affecting DNA methylation and histone modifications and small RNA-mediated processes, particularly that of microRNAs. Epigenetic changes are reversible and are closely interconnected. They are recognised to play a critical role as mediators of gene regulation, and any alteration in these mechanisms has been identified to mediate various pathophysiological conditions. Moreover, genetic predisposition and environmental factors, including dietary alterations, lifestyle or metabolic status, are identified to interact with the human epigenome, highlighting the importance of epigenetic factors as underlying processes in the aetiology of various diseases such as MetS. This review will reflect on how both the classical and microRNA-regulated epigenetic changes are associated with the pathophysiology of metabolic syndrome. We will then focus on the various aspects of epigenetic-based strategies used to modify MetS outcomes, including epigenetic diet, epigenetic drugs, epigenome editing tools and miRNA-based therapies.
Collapse
|
6
|
Morigny P, Boucher J, Arner P, Langin D. Lipid and glucose metabolism in white adipocytes: pathways, dysfunction and therapeutics. Nat Rev Endocrinol 2021; 17:276-295. [PMID: 33627836 DOI: 10.1038/s41574-021-00471-8] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/15/2021] [Indexed: 12/14/2022]
Abstract
In mammals, the white adipocyte is a cell type that is specialized for storage of energy (in the form of triacylglycerols) and for energy mobilization (as fatty acids). White adipocyte metabolism confers an essential role to adipose tissue in whole-body homeostasis. Dysfunction in white adipocyte metabolism is a cardinal event in the development of insulin resistance and associated disorders. This Review focuses on our current understanding of lipid and glucose metabolic pathways in the white adipocyte. We survey recent advances in humans on the importance of adipocyte hypertrophy and on the in vivo turnover of adipocytes and stored lipids. At the molecular level, the identification of novel regulators and of the interplay between metabolic pathways explains the fine-tuning between the anabolic and catabolic fates of fatty acids and glucose in different physiological states. We also examine the metabolic alterations involved in the genesis of obesity-associated metabolic disorders, lipodystrophic states, cancers and cancer-associated cachexia. New challenges include defining the heterogeneity of white adipocytes in different anatomical locations throughout the lifespan and investigating the importance of rhythmic processes. Targeting white fat metabolism offers opportunities for improved patient stratification and a wide, yet unexploited, range of therapeutic opportunities.
Collapse
Affiliation(s)
- Pauline Morigny
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France
- Institute for Diabetes and Cancer, Helmholtz Center Munich, Neuherberg, Germany
- Joint Heidelberg-IDC Translational Diabetes Program, Inner Medicine 1, Heidelberg University Hospital, Heidelberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Jeremie Boucher
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- The Lundberg Laboratory for Diabetes Research, University of Gothenburg, Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institutet, Stockholm, Sweden
| | - Dominique Langin
- Institute of Metabolic and Cardiovascular Diseases (I2MC), Institut National de la Santé et de la Recherche Médicale (Inserm), UMR1297, Toulouse, France.
- University of Toulouse, Paul Sabatier University, I2MC, UMR1297, Toulouse, France.
- Franco-Czech Laboratory for Clinical Research on Obesity, Third Faculty of Medicine, Prague and Paul Sabatier University, Toulouse, France.
- Toulouse University Hospitals, Laboratory of Clinical Biochemistry, Toulouse, France.
| |
Collapse
|
7
|
English J, Son JM, Cardamone MD, Lee C, Perissi V. Decoding the rosetta stone of mitonuclear communication. Pharmacol Res 2020; 161:105161. [PMID: 32846213 PMCID: PMC7755734 DOI: 10.1016/j.phrs.2020.105161] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/04/2020] [Accepted: 08/14/2020] [Indexed: 12/12/2022]
Abstract
Cellular homeostasis in eukaryotic cells requires synchronized coordination of multiple organelles. A key role in this stage is played by mitochondria, which have recently emerged as highly interconnected and multifunctional hubs that process and coordinate diverse cellular functions. Beyond producing ATP, mitochondria generate key metabolites and are central to apoptotic and metabolic signaling pathways. Because most mitochondrial proteins are encoded in the nuclear genome, the biogenesis of new mitochondria and the maintenance of mitochondrial functions and flexibility critically depend upon effective mitonuclear communication. This review addresses the complex network of signaling molecules and pathways allowing mitochondria-nuclear communication and coordinated regulation of their independent but interconnected genomes, and discusses the extent to which dynamic communication between the two organelles has evolved for mutual benefit and for the overall maintenance of cellular and organismal fitness.
Collapse
Affiliation(s)
- Justin English
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA; Graduate Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University, Boston, MA, 02115, USA
| | - Jyung Mean Son
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA; USC Norris Comprehensive Cancer Center, Los Angeles, CA, 90089, USA; Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, South Korea
| | - Valentina Perissi
- Department of Biochemistry, Boston University, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Thibonnier M, Esau C. Metabolic Benefits of MicroRNA-22 Inhibition. Nucleic Acid Ther 2019; 30:104-116. [PMID: 31873061 DOI: 10.1089/nat.2019.0820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabesity is a growing pandemic with substantial health and financial consequences. We are developing microRNA (miRNA)-based drug candidates that transform fat storing adipocytes into fat burning adipocytes (browning effect) to treat metabolic diseases characterized by lipotoxicity. Through phenotypic screening in primary cultures of human subcutaneous adipocytes, we discovered that inhibition of miRNA-22-3p by several complementary antagomirs resulted in increased lipid oxidation, mitochondrial activity, and energy expenditure (EE). These effects may be mediated through activation of target genes like KDM3A, KDM6B, PPARA, PPARGC1B, and SIRT1 involved in lipid catabolism, thermogenesis, and glucose homeostasis. In the model of Diet-Induced Obesity in mice of various ages, weekly subcutaneous injections of various miRNA-22-3p antagomirs produced a significant fat mass reduction, but no change of appetite or body temperature. Insulin sensitivity, as well as circulating glucose and cholesterol levels, was also improved. These original findings suggest that miRNA-22-3p inhibition could become a potent treatment of human obesity and type 2 diabetes mellitus, the so-called diabesity characterized by lipotoxicity and insulin resistance.
Collapse
|
9
|
Tanimura K, Suzuki T, Vargas D, Shibata H, Inagaki T. Epigenetic regulation of beige adipocyte fate by histone methylation. Endocr J 2019; 66:115-125. [PMID: 30606913 DOI: 10.1507/endocrj.ej18-0442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Adipose tissue harbors plasticity to adapt to environmental thermal changes. While brown adipocyte is a thermogenic cell which produces heat acutely in response to cold stimuli, beige (or brite) adipocyte is an inducible form of thermogenic adipocytes which emerges in the white adipose depots in response to chronic cold exposure. Such adaptability of adipocytes is regulated by epigenetic mechanisms. Among them, histone methylation is chemically stable and thus is an appropriate epigenetic mark for mediating cellular memory to induce and maintain the beige adipocyte characteristics. The enzymes that catalyze the methylation or demethylation of H3K27 and H3K9 regulate brown adipocyte biogenesis through their catalytic activity-dependent and -independent mechanisms. Resolving the bivalency of H3K4me3 and H3K27me3 as well as "opening" the chromatin structure by demethylation of H3K9 both mediate beige adipogenesis. In addition, it is recently reported that maintenance of beige adipocyte, beige-to-white transition, and cellular memory of prior cold exposure in beige adipocyte are also regulated by histone methylation. A further understanding of the epigenetic mechanism of beige adipocyte biogenesis would unravel the mechanism of the cellular memory of environmental stimuli and provide a novel therapeutics for the metabolic disorders such as obesity and diabetes that are influenced by environmental factors.
Collapse
Affiliation(s)
- Kyoko Tanimura
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
- Department of Diabetes, Endocrinology, and Metabolism, Nippon Medical School, Tokyo 113-8603, Japan
| | - Tomohiro Suzuki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Diana Vargas
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Hiroshi Shibata
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| | - Takeshi Inagaki
- Laboratory of Epigenetics and Metabolism, Institute for Molecular and Cellular Regulation, Gunma University, Gunma 371-8512, Japan
| |
Collapse
|