1
|
El Sisi AM, Eissa EM, Hassan AHE, Bekhet MA, El-Ela FIA, Roh EJ, Kharshoum RM, Ali AA. Nose-to-Brain Delivery of Chitosan-Grafted Leciplexes for Promoting the Bioavailability and Antidepressant Efficacy of Mirtazapine: In Vitro Assessment and Animal Studies. Pharmaceuticals (Basel) 2025; 18:46. [PMID: 39861109 PMCID: PMC11768278 DOI: 10.3390/ph18010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Mirtazapine (MRZ) is a psychotropic drug prescribed to manage serious sorts of depression. By virtue of its extensive initial-pass metabolic process with poor water solubility, the ultimate bioavailability when taken orally is a mere 50%, necessitating repeated administration. The current inquiry intended to fabricate nose-to-brain chitosan-grafted cationic leciplexes of MRZ (CS-MRZ-LPX) to improve its pharmacokinetic weaknesses and boost the pharmacodynamics aspects. Methods: Primarily, MRZ-loaded leciplexes (MRZ-LPXs) were fabricated and tailored employing a central composite design (CCD). Vesicle diameter size (VS), entrapment efficiency (EE %), cumulative MRZ release percentage (CMRZR %), and total quantity penetrating after twenty-four hours (Q24) were the four parameters assessed. Then, the determined optimum formulation was coated with chitosan (CS-MRZ-LPX) and utilized in pharmacodynamics investigations and in vivo biologic distribution studies in Wistar male rats. Results: The customized MRZ-LPX formulation had a diameter size of 186.2 ± 3.5 nm and drug EE of 45.86 ± 0.76%. Also, the tailored MRZ-LPX formulation had a cumulative amount of MRZ released of 76.66 ± 3.06% and the total Q24 permeated was 383.23 ± 13.08 µg/cm2. Intranasal delivery of the tailored CS-MRZ-LPX revealed notably superior pharmacokinetic attributes inside the brain and circulation compared to the orally administered MRZ suspension and the intranasal free drug suspension (p < 0.05); the relative bioavailability was 370.9% and 385.6% for plasma and brain, respectively. Pharmacodynamics' and immunohistopathological evaluations proved that optimum intranasal CS-MRZ-LPX boosted antidepressant activity compared to the oral and free nasal drug administration. Conclusions: CS-MRZ-LPX tailored formulation can potentially be regarded as a prospective nano platform to boost bioavailability and enhance pharmacodynamics efficacy. Ultimately, intranasal CS-MRZ-LPX can be considered a promising avenue for MRZ targeted brain delivery as an antidepressant.
Collapse
Affiliation(s)
- Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| | - Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| | - Ahmed H. E. Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Marina A. Bekhet
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Eun Joo Roh
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Rasha M. Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (A.M.E.S.); (E.M.E.); (R.M.K.); (A.A.A.)
| |
Collapse
|
2
|
Eissa EM, El Sisi AM, Bekhet MA, El-Ela FIA, Kharshoum RM, Ali AA, Alrobaian M, Ali AMA. pH-Sensitive In Situ Gel of Mirtazapine Invasomes for Rectal Drug Delivery: Protruded Bioavailability and Anti-Depressant Efficacy. Pharmaceuticals (Basel) 2024; 17:978. [PMID: 39204084 PMCID: PMC11357403 DOI: 10.3390/ph17080978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 09/03/2024] Open
Abstract
The present research emphasizes fabrication alongside the assessment of an innovative nano-vesicular membranous system known as invasomes (NVMs) laden with Mirtazapine for rectal administration. This system could circumvent the confines of orally administered counterparts regarding dose schedules and bioavailability. Mirtazapine invasomes were tailored by amalgamating phospholipid, cineole, and ethanol through a thin-film hydration approach rooted in the Box-Behnken layout. Optimization of composition parameters used to fabricate desired NVMs' physicochemical attributes was undertaken using the Design-Expert® program. The optimal MRZ-NVMs were subsequently transformed to a pH-triggered in situ rectal gel followed by animal pharmacodynamic and pharmacokinetic investigations relative to rectal plain gel and oral suspension. The optimized NVMs revealed a diameter size of 201.3 nm, a z potential of -28.8 mV, an entrapment efficiency of 81.45%, a cumulative release within 12 h of 67.29%, and a cumulative daily permeated quantity of 468.68 µg/cm2. Compared to the oral suspension, pharmacokinetic studies revealed a 2.85- and 4.45-fold increase in calculated rectal bioavailability in circulation and brain, respectively. Pharmacodynamic and immunohistopathology evaluations exposed superior MRZ-NVMs attributed to the orally administered drug. Consequently, rectal MRZ-NVMs can potentially be regarded as a prospective nanoplatform with valuable pharmacokinetics and tolerability assets.
Collapse
Affiliation(s)
- Essam M. Eissa
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Amani M. El Sisi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Marina A. Bekhet
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Fatma I. Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Rasha M. Kharshoum
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Adel A. Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt; (E.M.E.); (A.M.E.S.); (M.A.B.); (R.M.K.); (A.A.A.)
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| | - Ahmed M. Abdelhaleem Ali
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia;
| |
Collapse
|
3
|
Antons M, Lindner M, Eilles E, Günther L, Delker A, Branner C, Krämer A, Beck R, Oos R, Wuehr M, Ziegler S, Strupp M, Zwergal A. Dose- and application route-dependent effects of betahistine on behavioral recovery and neuroplasticity after acute unilateral labyrinthectomy in rats. Front Neurol 2023; 14:1175481. [PMID: 37538257 PMCID: PMC10395078 DOI: 10.3389/fneur.2023.1175481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/28/2023] [Indexed: 08/05/2023] Open
Abstract
Introduction Betahistine is widely used for the treatment of various vestibular disorders. However, the approved oral administration route and maximum daily dose are evidently not effective in clinical trials, possibly due to a major first-pass metabolism by monoamine oxidases (MAOs). The current study aimed to test different application routes (i.v./s.c./p.o.), doses, and concurrent medication (with the MAO-B inhibitor selegiline) for their effects on behavioral recovery and cerebral target engagement following unilateral labyrinthectomy (UL) in rats. Methods Sixty rats were subjected to UL by transtympanic injection of bupivacaine/arsanilic acid and assigned to five treatment groups: i.v. low-dose betahistine (1 mg/kg bid), i.v. high-dose betahistine (10 mg/kg bid), p.o. betahistine (1 mg/kg bid)/selegiline (1 mg/kg once daily), s.c. betahistine (continuous release of 4.8 mg/day), and i.v. normal saline bid (sham treatment; days 1-3 post-UL), respectively. Behavioral testing of postural asymmetry, nystagmus, and mobility in an open field was performed seven times until day 30 post-UL and paralleled by sequential cerebral [18F]-FDG-μPET measurements. Results The therapeutic effects of betahistine after UL differed in extent and time course and were dependent on the dose, application route, and selegiline co-medication: Postural asymmetry was significantly reduced on 2-3 days post-UL by i.v. high-dose and s.c. betahistine only. No changes were observed in the intensity of nystagmus across groups. When compared to sham treatment, movement distance in the open field increased up to 5-fold from 2 to 30 days post-UL in the s.c., i.v. high-dose, and p.o. betahistine/selegiline groups. [18F]-FDG-μPET showed a dose-dependent rCGM increase in the ipsilesional vestibular nucleus until day 3 post-UL for i.v. high- vs. low-dose betahistine and sham treatment, as well as for p.o. betahistine/selegiline and s.c. betahistine vs. sham treatment. From 1 to 30 days post-UL, rCGM increased in the thalamus bilaterally for i.v. high-dose betahistine, s.c. betahistine, and p.o. betahistine/selegiline vs. saline treatment. Discussion Betahistine has the potential to augment the recovery of dynamic deficits after UL if the administration protocol is optimized toward higher effective plasma levels. This may be achieved by higher doses, inhibition of MAO-based metabolism, or a parenteral route. In vivo imaging suggests a drug-target engagement in central vestibular networks.
Collapse
Affiliation(s)
- Melissa Antons
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Magdalena Lindner
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Eva Eilles
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lisa Günther
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Astrid Delker
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christina Branner
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Anja Krämer
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Roswitha Beck
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Rosel Oos
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Max Wuehr
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Michael Strupp
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Andreas Zwergal
- German Center for Vertigo and Balance Disorders, DSGZ, LMU University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Luo J, Zhao X, Guo B, Han Y. Preparation, thermal response mechanisms and biomedical applications of thermosensitive hydrogels for drug delivery. Expert Opin Drug Deliv 2023; 20:641-672. [PMID: 37218585 DOI: 10.1080/17425247.2023.2217377] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/19/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Drug treatment is one of the main ways of coping with disease today. For the disadvantages of drug management, thermosensitive hydrogel is used as a countermeasure, which can realize the simple sustained release of drugs and the controlled release of drugs in complex physiological environments. AREAS COVERED This paper talks about thermosensitive hydrogels that can be used as drug carriers. The common preparation materials, material forms, thermal response mechanisms, characteristics of thermosensitive hydrogels for drug release and main disease treatment applications are reviewed. EXPERT OPINION When thermosensitive hydrogels are used as drug loading and delivery platforms, desired drug release patterns and release profiles can be tailored by selecting raw materials, thermal response mechanisms, and material forms. The properties of hydrogels prepared from synthetic polymers will be more stable than natural polymers. Integrating multiple thermosensitive mechanisms or different kinds of thermosensitive mechanisms on the same hydrogel is expected to realize the spatiotemporal differential delivery of multiple drugs under temperature stimulation. The industrial transformation of thermosensitive hydrogels as drug delivery platforms needs to meet some important conditions.
Collapse
Affiliation(s)
- Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
5
|
Salem HF, Ali AA, Rabea YK, Abo El-Ela FI, Khallaf RA. Optimization and Appraisal of Chitosan-Grafted PLGA Nanoparticles for Boosting Pharmacokinetic and Pharmacodynamic Effect of Duloxetine HCl Using Box-Benkhen Design. J Pharm Sci 2023; 112:544-561. [PMID: 36063878 DOI: 10.1016/j.xphs.2022.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/28/2022] [Accepted: 08/28/2022] [Indexed: 01/18/2023]
Abstract
Duloxetine HCl (DXH) is a psychiatric medicine employed for treating major depressive disorder. Nonetheless, its low water solubility, high first-pass metabolism, and acid instability diminish the absolute oral bioavailability to 40%, thus necessitating frequent administration. Therefore, the aim of the current study was to formulate DXH as nasal chitosan-grafted polymeric nanoparticles to improve its pharmacokinetic and pharmacodynamic properties. Applying the Box-Behnken design, DXH loaded PLGA-Chitosan nanoparticles (DXH-PLGA-CS-NPs) were fabricated and optimized using polylactide-co-glycolic acid (PLGA), chitosan (CS), and polyvinyl alcohol (PVA) as the independent factors. Particle size, entrapment efficiency, release percent, and cumulative amount permeated after 24 h of DXH-PLGA-CS-NPs (dependent variables) were evaluated. The in-vivo biodistribution and pharmacodynamic studies were done in male Wistar rats. The optimized DXH-PLGA-CS-NPs had a vesicle size of 122.11 nm and EE% of 66.95 with 77.65% release and Q24 of 555.34 (µg/cm2). Ex-vivo permeation study revealed 4-folds increase in DXH permeation from DXH-PLGA-CS-NPs after 24 h compared to DXH solution. Intranasal administration of optimized DXH-PLGA-CS-NPs resulted in significantly higher (p < 0.05) Cmax, AUCtotal, t1/2, and MRT in rat brain and plasma than oral DXH solution. Pharmacodynamics investigation revealed that intranasally exploited optimal DXH-PLGA-CS-NPs could be deemed a fruitful horizon for DXH as a treatment for depression.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmine K Rabea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt, 62511
| | - Rasha A Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
6
|
AbouElhassan KM, Sarhan HA, Hussein AK, Taye A, Ahmed YM, Safwat MA. Brain Targeting of Citicoline Sodium via Hyaluronic Acid-Decorated Novel Nano-Transbilosomes for Mitigation of Alzheimer's Disease in a Rat Model: Formulation, Optimization, in vitro and in vivo Assessment. Int J Nanomedicine 2022; 17:6347-6376. [PMID: 36540376 PMCID: PMC9759982 DOI: 10.2147/ijn.s381353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/23/2022] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is one of the furthermost advanced neurodegenerative disorders resulting in cognitive and behavioral impairment. Citicoline sodium (CIT) boosts the brain's secretion of acetylcholine, which aids in membrane regeneration and repair. However, it suffers from poor blood-brain barrier (BBB) permeation, which results in lower levels of CIT in the brain. PURPOSE This study targeted to encapsulate CIT into novel nano-platform transbilosomes decorated with hyaluronic acid CIT-HA*TBLs to achieve enhanced drug delivery from the nose to the brain. METHODS A method of thin-film hydration was utilized to prepare different formulae of CIT-TBLs using the Box-Behnken design. The optimized formula was then hyuloranated via integration of HA to form the CIT-HA*TBLs formula. Furthermore, AD induction was performed by aluminum chloride (Alcl3), animals were allocated, and brain hippocampus tissue was isolated for ELISA and qRT-PCR analysis of malondialdehyde (MDA), nuclear factor kappa B (NF-kB), and microRNA-137 (miR-137) coupled with immunohistochemical amyloid-beta (Aβ1-42) expression and histopathological finding. RESULTS The hyuloranated CIT-HA*TBLs formula, which contained the following ingredients: PL (300 mg), Sp 60 (43.97 mg), and SDC (20 mg). They produced spherical droplets at the nanoscale (178.94 ±12.4 nm), had a high entrapment efficiency with 74.92± 5.54%, had a sustained release profile of CIT with 81.27 ±3.8% release, and had ex vivo permeation of CIT with 512.43±19.58 μg/cm2. In vivo tests showed that CIT-HA*TBL thermogel dramatically reduces the hippocampus expression of miR-137 and (Aβ1-42) expression, boosting cholinergic neurotransmission and decreasing MDA and NF-kB production. Furthermore, CIT-HA*TBLs thermogel mitigate histopathological damage in compared to the other groups. CONCLUSION Succinctly, the innovative loading of CIT-HA*TBLs thermogel is a prospectively invaluable intranasal drug delivery system that can raise the efficacy of CIT in Alzheimer's management.
Collapse
Affiliation(s)
- Kariman M AbouElhassan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
- Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Hatem A Sarhan
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Amal K Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt
| | - Ashraf Taye
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| | - Yasmin M Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, 62514, Egypt
| | - Mohamed A Safwat
- Department of Pharmaceutics, Faculty of Pharmacy, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
7
|
Salem HF, Ali AA, Rabea YK, El-Ela FIA, Khallaf RA. Glycerosomal thermosensitive in situ gel of duloxetine HCl as a novel nanoplatform for rectal delivery: in vitro optimization and in vivo appraisal. Drug Deliv Transl Res 2022; 12:3083-3103. [PMID: 35622235 DOI: 10.1007/s13346-022-01172-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2022] [Indexed: 11/28/2022]
Abstract
Duloxetine HCl (DXH) is a reuptake inhibitor of serotonin and norepinephrine used to treat the major depressive disorder. Following its extensive hepatic metabolism, acid-labile nature, and limited aqueous solubility, DXH has poor oral bioavailability (40%). The rectal route has been suggested as another route of administration to surmount such challenges. The present study aimed to prepare DXH-loaded glycerosomal (DXH-GLYS) in situ gel for rectal administration to increase DXH permeability and improve its bioavailability. Box-Behnken design (BBD) was adopted to prepare and optimize nanoglycerosomes. The impact of Phospholipon 90G (PL90G), Tween 80 concentrations, and glycerol percentage on encapsulation efficiency, nanoglycerosomal size, % cumulative DXH released, and the cumulative DXH permeated per unit area after 24 h were studied by the design. The pharmacokinetic and pharmacodynamic behavior of optimized formulation was investigated in rats. The formulated DXH-GLYS had a vesicle size ranging between 135.9 and 430.6 nm and an entrapment efficiency between 69.11 and 98.12%. The permeation experiment revealed that the optimized DXH-GLYS in situ gel increased DXH permeation by 2.62-fold compared to DXH solution. Pharmacokinetics studies disclosed that the DXH-GLYS in situ rectal gel exhibited 2.24-times increment in DXH bioavailability relative to oral DXH solution. The pharmacodynamic study revealed that the DXH-GLYS rectal treatment significantly improved the behavioral analysis parameters and was more efficacious as an antidepressant than the oral DXH solution. Collectively, these findings demonstrate that GLYS can be considered a potentially valuable rectal nanocarrier that could boost the DXH efficacy.
Collapse
Affiliation(s)
- Heba F Salem
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Adel A Ali
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmine K Rabea
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Fatma I Abo El-Ela
- Department of Pharmacology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt, 62511, Egypt
| | - Rasha A Khallaf
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
8
|
Elkomy MH, Abou-Taleb HA, Eid HM, Yassin HA. Fabrication and In Vitro/In Vivo Appraisal of Metronidazole Intra-Gastric Buoyant Sustained-Release Tablets in Healthy Volunteers. Pharmaceutics 2022; 14:pharmaceutics14040863. [PMID: 35456697 PMCID: PMC9024553 DOI: 10.3390/pharmaceutics14040863] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/08/2022] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori is thought to be the most common cause of peptic and duodenal ulcers. Eradication of this organism is now considered one of the lines of treatment of gastric and duodenal ulcers. This can be achieved via local delivery of antibacterial agents in high concentrations. Accordingly, our objective was to fabricate and evaluate sustained release floating tablets for metronidazole to extend the gastric residence period and control the release rate of metronidazole. Floating tablets containing cellulose derivatives and Avicel were prepared using direct compression. The rate of metronidazole release from the floating tablets (K = 6.278 mg min−1/2) was significantly lower than that from conventional tablets (K = 10.666 mg min−1/2), indicating sustained drug release, according to the Higuchi model, for more than 6 h in an acidic medium of 0.1 N HCl. In vivo study in healthy volunteers revealed significantly improved bioavailability; increased Tmax, AUC, and MRT; and significantly lower absorption rate constant after a single oral dose of 150 mg metronidazole as floating tablets. In addition, the significant increase in MRT indicated an in vivo sustained drug release. The floating tablets provided several benefits, including ease of preparation, absence of effervescent ingredients, and reliance on a pH-independent gel-forming agent to deliver metronidazole in a sustained manner. In conclusion, the prepared tablets could be promising for enhancing both local and systemic metronidazole efficacy.
Collapse
Affiliation(s)
- Mohammed H. Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: ; Tel.: +966-56-096-7705
| | - Heba A. Abou-Taleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Merit University (MUE), Sohag 82755, Egypt;
| | - Hussein M. Eid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt;
| | - Heba A. Yassin
- Department of Pharmaceutics, Faculty of Pharmacy, El Saleheya El Gadida University, El Saleheya El Gadida 44813, Egypt;
| |
Collapse
|
9
|
Gardouh AR, Srag El-Din ASG, Salem MSH, Moustafa Y, Gad S. Starch Nanoparticles for Enhancement of Oral Bioavailability of a Newly Synthesized Thienopyrimidine Derivative with Anti-Proliferative Activity Against Pancreatic Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:3071-3093. [PMID: 34305395 PMCID: PMC8292977 DOI: 10.2147/dddt.s321962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 01/02/2023]
Abstract
Purpose This research aimed to improve water solubility and oral bioavailability of a newly synthesized thienopyrimidine derivative (TPD) with anti-pancreatic cancer activity by loading on starch nanoparticles (SNPs). Methods TPD was synthesized, purified and its ADME behavior was predicted using Swiss ADME software. A UV spectroscopy method was developed and validated to measure TPD concentration at various dosage forms. SNPs loaded with TPD (SNPs-TPD) were prepared, characterized for particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), entrapment efficiency, in-vitro release, and in-vivo animal study. Results The Swiss ADME results showed that TPD can be administered orally; however, it has low oral bioavailability (0.55) and poor water solubility. The significant regression coefficient of the calibration curve (r2 = 0.9995), the precision (%RSD < 0.5%) and the accuracy (99.46−101.72%) confirmed the efficacy of the developed UV method. SNPs-TPD had a spherical monodispersed (PDI= 0.12) shape, nanoparticle size (22.98 ± 4.23) and good stability (−21 ± 4.72 mV). Moreover, FT-IR and DSC revealed changes in the physicochemical structure of starch resulting in SNPs formation. The entrapment efficiency was 97% ± 0.45%, and the in-vitro release showed that the SNPs enhanced the solubility of the TPD. The in-vivo animal study and histopathology showed that SNPs enhanced the oral bioavailability of TPD against solid Ehrlich carcinoma. Conclusion SNPs-TPD were superior in drug solubility and oral bioavailability than those obtained from TPD suspension.
Collapse
Affiliation(s)
- Ahmed R Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, 21110, Jordan
| | - Ahmed S G Srag El-Din
- Department of Pharmaceutics, Faculty of Pharmacy, Delta University for Science & Technology, Gamasa City, Egypt
| | - Mohamed S H Salem
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Suez Canal University, Ismailia, 41522, Egypt.,The Institute of Scientific and Industrial Research (ISIR), Osaka University, Ibaraki-shi, Osaka, 567-0047, Japan
| | - Yasser Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Elkomy MH, Elmowafy M, Shalaby K, Azmy AF, Ahmad N, Zafar A, Eid HM. Development and machine-learning optimization of mucoadhesive nanostructured lipid carriers loaded with fluconazole for treatment of oral candidiasis. Drug Dev Ind Pharm 2021; 47:246-258. [PMID: 33416006 DOI: 10.1080/03639045.2020.1871005] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The aim of this work was to prepare and optimize mucoadhesive nanostructured lipid carrier (NLC) impregnated with fluconazole for better management of oral candidiasis. The NLCs were fabricated using an emulsification/sonication technique. The nanoparticles consisted of stearic acid, oleic acid, Pluronic F127, and lecithin. Box-Behnken design, artificial neural networking, and variable weight desirability were employed to optimize the joint effect of drug concentration in the drug/lipid mixture, solid lipid concentration in the solid/liquid lipid mixture, and surfactant concentration in the total mixture on size and entrapment. The optimized NLCs were coated with chitosan. The nanoparticles were characterized by surface charge, spectroscopic, thermal, morphological, mucoadhesion, release, histopathological, and antifungal properties. The nanoparticles are characterized by a particle size of 335 ± 13.5 nm, entrapment efficiency of 73.1 ± 4.9%, sustained release, minor histopathological effects on rabbit oral mucosa, and higher fungal inhibition efficiency for an extended period of time compared with fluconazole solution. Coating the nanoparticles with chitosan increased its adhesion to rabbit oral buccal mucosa and improved its anti-candidiasis activity. It is concluded that mucoadhesive lipid-based nanoparticles amplify the effect of fluconazole on Candida albicans in vitro. This finding warrants pre-clinical and clinical studies in oral candidiasis disease models to corroborate in vitro findings.
Collapse
Affiliation(s)
- Mohammed H Elkomy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Faculty of Pharmacy (Boys), Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Khaled Shalaby
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia.,Faculty of Pharmacy (Boys), Department of Pharmaceutics and Industrial Pharmacy, Al-Azhar University, Nasr City, Egypt
| | - Ahmed F Azmy
- Faculty of Pharmacy, Department of Microbiology & Immunology, Beni-Suef University, Beni-Suef, Egypt
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Hussein M Eid
- Faculty of Pharmacy, Department of Pharmaceutics and Industrial Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
11
|
A novel nanogel loaded with chitosan decorated bilosomes for transdermal delivery of terbutaline sulfate: artificial neural network optimization, in vitro characterization and in vivo evaluation. Drug Deliv Transl Res 2020; 10:471-485. [PMID: 31677149 DOI: 10.1007/s13346-019-00688-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The objective of the present work was to formulate, optimize, and evaluate transdermal terbutaline sulfate (TBN)-loaded bilosomes (BLS) in gel, compared to conventional oral TBN solution and transdermal gel loaded with free TBN, aiming at evading the hepatic first-pass metabolism. A face-centered central composite design was adopted to observe the effects of different formulation variables on TBN-BLS, and artificial neural network (ANN) modeling was employed to optimize TBN-BLS. TBN-BLS were prepared by a thin film hydration method integrating soybean phosphatidylcholine and cholesterol as a lipid phase and sodium deoxycholate (SDC) as a surfactant with or without the coating of chitosan (CTS). After being subjected to physicochemical characterization, TBN-BLS were enrolled in a histopathological study and pharmacokinetic investigation in a rat model. The optimized TBN chitosan-coated bilosomes (TBN-CTS-BLS) were spherical vesicles (245.13 ± 10.23 nm) with adequate entrapment efficiency (65.25 ± 5.51%) and good permeation characteristics (340.11 ± 22.34 μg/cm2). The TBN-CTS-BLS gel formulation was well-tolerated with no inflammatory signs manifested upon histopathological evaluation. The pharmacokinetic study revealed that the optimized TBN-CTS-BLS formulation successively enhanced the bioavailability of TBN by about 2.33-fold and increased t1/2 to about 6.21 ± 0.24 h as compared to the oral solution. These findings support the prospect use of BLS as active and safe transdermal carrier for TBN in the treatment of asthma. Graphical Abstract.
Collapse
|
12
|
Physically Optimized Nano-Lipid Carriers Augment Raloxifene and Vitamin D Oral Bioavailability in Healthy Humans for Management of Osteoporosis. J Pharm Sci 2020; 109:2145-2155. [PMID: 32194094 DOI: 10.1016/j.xphs.2020.03.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/23/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022]
|
13
|
Transfersomal nanovesicles for nose-to-brain delivery of ofloxacin for better management of bacterial meningitis: Formulation, optimization by Box-Behnken design, characterization and in vivo pharmacokinetic study. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101304] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Eid HM, Elkomy MH, El Menshawe SF, Salem HF. Development, Optimization, and In Vitro/In Vivo Characterization of Enhanced Lipid Nanoparticles for Ocular Delivery of Ofloxacin: the Influence of Pegylation and Chitosan Coating. AAPS PharmSciTech 2019; 20:183. [PMID: 31054011 DOI: 10.1208/s12249-019-1371-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/20/2019] [Indexed: 01/08/2023] Open
Abstract
This study aims to investigate whether modification of solid lipid nanoparticles (SLNs) with chitosan (CTS) and polyethylene glycol (PEG) coatings enhances corneal retention time and transcorneal bioavailability. Ofloxacin (OFLOX) was selected as the model drug because of its potential benefits for the treatment of local eye infections. The OFLOX-CTS-PEG-SLN was prepared by a modified emulsion/solvent evaporation technique. A central composite design was implemented to investigate the influence of total lipid/drug ratio, surfactant concentration, PEG stearate concentration in the lipid mixture, and CTS concentration on size, entrapment, transcorneal permeation, and adhesion to the corneal mucosal membrane. The optimized OFLOX-CTS-PEG-SLN was characterized for OFLOX cumulative percentage released in simulated tear fluid and permeated across the excised bovine corneal membrane. Moreover, nanoparticle morphology, eye irritation via histopathological analysis, and OFLOX concentration in the ocular fluids and tissues were determined. A total lipid/drug ratio of 19:1, Tween 80 of 2%, PEG stearate concentration in the lipid mixture (% w/w) of 2.6%, and CTS concentration (% w/v) of 0.23% produced 132.9 nm particles entrapping 74.8% of the total drug added. The particles detached from the corneal membrane at a force of 3700 dyne/cm2. The %OFLOX released from the optimized nanoparticles was 63.3, and 66% of the drug permeated after 24 h. Compared to Oflox® drops, the optimized OFLOX-CTS-PEG-SLN exhibited similar tolerability but two- to threefold higher concentrations in the eyes of rabbits. Coating of SLN with chitosan and PEG augments the ocular bioavailability of OFLOX by increasing transcorneal permeation and enhancing mucoadhesion strength.
Collapse
|
15
|
Salem HF, Kharshoum RM, Abou-Taleb HA, Naguib DM. Nanosized Transferosome-Based Intranasal In Situ Gel for Brain Targeting of Resveratrol: Formulation, Optimization, In Vitro Evaluation, and In Vivo Pharmacokinetic Study. AAPS PharmSciTech 2019; 20:181. [PMID: 31049748 DOI: 10.1208/s12249-019-1353-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/26/2019] [Indexed: 12/30/2022] Open
Abstract
Resveratrol (RES) is a potent antioxidant used for the management of several central nervous system diseases. RES bioavailability is less than 1 owing to its low solubility and extensive intestinal and hepatic metabolism. The aim of the study was to enhance RES bioavailability through developing intranasal transferosomal mucoadhesive gel. Reverse evaporation-vortexing sonication method was employed to prepare RES-loaded transferosomes. Transferosomes were developed via 34 definitive screening design, using soya lecithin, permeation enhancers, and surfactants. The optimized formula displayed spherical shape with vesicle size of 83.79 ± 2.54 nm and entrapment efficiency (EE%) of 72.58 ± 4.51%. Mucoadhesive gels were prepared and evaluated, then optimized RES transferosomes were incorporated into the selected gel and characterized using FTIR spectroscopy, in vitro release, and ex vivo permeation study. Histopathological examination of nasal mucosa and in vivo pharmacokinetic study were conducted. In vitro drug release from transferosomal gel was 65.87 ± 2.12% and ex vivo permeation was 75.95 ± 3.19%. Histopathological study confirmed the safety of the optimized formula. The Cmax of RES in the optimized RES trans-gel was 2.15 times higher than the oral RES suspension and AUC(0-∞) increased by 22.5 times. The optimized RES trans-gel developed intranasal safety and bioavailability enhancement through passing hepatic and intestinal metabolism.
Collapse
|
16
|
Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm 2019; 559:86-101. [PMID: 30677480 DOI: 10.1016/j.ijpharm.2019.01.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Thermosensitive hydrogels are in situ gelling systems composed of hydrophilic homopolymers or block copolymers which remain as solutions at room temperature and form gels after administration into the body. Its application in advanced drug delivery has gained significant attention in recent years. The tunable characteristics of thermosensitive hydrogels make them versatile and capable of incorporating both hydrophilic and lipophilic compounds and macromolecules. The drug molecules can be included as free molecules or preformulated into nano- or micro-particles or liposomes. Although there were several reviews on the materials of thermosensitive hydrogels, the compatibility between the drug and thermosensitive material as well as its in vitro release mechanisms and in vivo performance have barely been investigated. The current review is proposed aiming to not only provide an update on the recent development in thermosensitive hydrogel formulations for nasal, ocular and cutaneous deliveries, but also identify the relationship between the drug characteristics and the loading strategies, and their impacts on the release mechanisms and the in vivo performance. Our current update for the first time highlights the essential features for successful development of in situ thermosensitive hydrogels to facilitate nasal, ocular or cutaneous drug deliveries.
Collapse
|