1
|
Dean J, Hoch C, Wollenberg B, Navidzadeh J, Maheta B, Mandava A, Knoedler S, Sherwani K, Baecher H, Schmitz A, Alfertshofer M, Heiland M, Kreutzer K, Koerdt S, Knoedler L. Advancements in bioengineered and autologous skin grafting techniques for skin reconstruction: a comprehensive review. Front Bioeng Biotechnol 2025; 12:1461328. [PMID: 39840132 PMCID: PMC11747595 DOI: 10.3389/fbioe.2024.1461328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 12/03/2024] [Indexed: 01/23/2025] Open
Abstract
The reconstruction of complex skin defects challenges clinical practice, with autologous skin grafts (ASGs) as the traditional choice due to their high graft take rate and patient compatibility. However, ASGs have limitations such as donor site morbidity, limited tissue availability, and the necessity for multiple surgeries in severe cases. Bioengineered skin grafts (BSGs) aim to address these drawbacks through advanced tissue engineering and biomaterial science. This study conducts a systematic review to describe the benefits and shortcomings of BSGs and ASGs across wound healing efficacy, tissue integration, immunogenicity, and functional outcomes focusing on wound re-epithelialization, graft survival, and overall aesthetic outcomes. Preliminary findings suggest ASGs show superior early results, while BSGs demonstrate comparable long-term outcomes with reduced donor site morbidity. This comparative analysis enhances understanding of bioengineered alternatives in skin reconstruction, potentially redefining best practices based on efficacy, safety, and patient-centric outcomes, highlighting the need for further innovation in bioengineered solutions.
Collapse
Affiliation(s)
- Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Cosima Hoch
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Barbara Wollenberg
- Department of Otolaryngology, Head and Neck Surgery, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Justin Navidzadeh
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Bhagvat Maheta
- California Northstate University College of Medicine, Elk Grove, CA, United States
| | - Anisha Mandava
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Samuel Knoedler
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Khalil Sherwani
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Helena Baecher
- Institute of Regenerative Biology and Medicine, Helmholtz Zentrum München, Munich, Germany
| | - Alina Schmitz
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Michael Alfertshofer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Max Heiland
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Kilian Kreutzer
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Steffen Koerdt
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| | - Leonard Knoedler
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Department of Oral and Maxillofacial Surgery, Berlin, Germany
| |
Collapse
|
2
|
Nifontova G, Safaryan S, Khristidis Y, Smirnova O, Vosough M, Shpichka A, Timashev P. Advancing wound healing by hydrogel-based dressings loaded with cell-conditioned medium: a systematic review. Stem Cell Res Ther 2024; 15:371. [PMID: 39420416 PMCID: PMC11488269 DOI: 10.1186/s13287-024-03976-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Wound healing represents a complex biological process, critically important in clinical practice due to its direct implication in a patient's recovery and quality of life. Conservative wound management frequently falls short in providing an ideal environment for the optimal tissue regeneration, often resulting in extended healing periods and elevated risk of infection and other complications. The emerging biomaterials, particularly hydrogels, have shown substantial promise in addressing these challenges by offering properties such as biocompatibility, biodegradability, and the ability to cure wound environment. Recent advancements have highlighted the therapeutic potential of integrating cell-derived conditioned medium (CM) into hydrogel matrices. Cell-derived CM represents a rich array of bioactive molecules, demonstrating significant efficacy in modulating cellular activities crucial for wound healing, including cellular proliferation, migration, and angiogenesis. METHODS The methodology of this review adheres to the standards set by the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. The review includes a selection of studies published within the last five years, focusing on in vivo experiments involving various types of skin injuries treated with topically applied hydrogels loaded with CM (H-CM). The search strategy refers to the PICO framework and includes the assessment of study quality by CAMARADES tool. RESULTS The systematic review represents a detailed evaluation of H-CM dressings wound healing efficiency based on the experimental results of cell-based assays and animal wound models. The study targets to reveal wound healing capacity of H-CM dressings, and provides a comparative data analysis, limitations of methods and discussions of H-CM role in advancing the wound healing therapy. CONCLUSIONS The data presented demonstrate that H-CM is a promising material for advanced wound healing and regenerative medicine. These dressings possess proved in vitro/in vivo efficacy that highlights their strong clinical potential and paves the way to further investigations of H-CM formulations within clinical trials.
Collapse
Affiliation(s)
- Galina Nifontova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Sofia Safaryan
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Yana Khristidis
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, Tehran, 1665666311, Iran
| | - Anastasia Shpichka
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia.
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 8-2 Trubetskaya St, Moscow, 119991, Russia
| |
Collapse
|
3
|
Mohamed HM, Sundar P, Ridwan NAA, Cheong AJ, Mohamad Salleh NA, Sulaiman N, Mh Busra F, Maarof M. Optimisation of cryopreservation conditions, including storage duration and revival methods, for the viability of human primary cells. BMC Mol Cell Biol 2024; 25:20. [PMID: 39350017 PMCID: PMC11441136 DOI: 10.1186/s12860-024-00516-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Cryopreservation is a crucial procedure for safeguarding cells or other biological constructs, showcasing considerable potential for applications in tissue engineering and regenerative medicine. AIMS This study aimed to evaluate the effectiveness of different cryopreservation conditions on human cells viability. METHODS A set of cryopreserved data from Department of Tissue Engineering and Regenerative Medicine (DTERM) cell bank were analyse for cells attachment after 24 h being revived. The revived cells were analysed based on different cryopreservation conditions which includes cell types (skin keratinocytes and fibroblasts, respiratory epithelial, bone marrow mesenchymal stem cell (MSC); cryo mediums (FBS + 10% DMSO; commercial medium); storage durations (0 to > 24 months) and locations (tank 1-2; box 1-5), and revival methods (direct; indirect methods). Human dermal fibroblasts (HDF) were then cultured, cryopreserved in different cryo mediums (HPL + 10% DMSO; FBS + 10% DMSO; Cryostor) and stored for 1 and 3 months. The HDFs were revived using either direct or indirect method and cell number, viability and protein expression analysis were compared. RESULTS In the analysis cell cryopreserved data; fibroblast cells; FBS + 10% DMSO cryo medium; storage duration of 0-6 months; direct cell revival; storage in vapor phase of cryo tank; had the highest number of vials with optimal cell attachment after 24 h revived. HDFs cryopreserved in FBS + 10% DMSO for 1 and 3 months with both revival methods, showed optimal live cell numbers and viability above 80%, higher than other cryo medium groups. Morphologically, the fibroblasts were able to retain their phenotype with positive expression of Ki67 and Col-1. HDFs cryopreserved in FBS + 10% DMSO at 3 months showed significantly higher expression of Ki67 (97.3% ± 4.62) with the indirect revival method, while Col-1 expression (100%) was significantly higher at both 1 and 3 months compared to other groups. CONCLUSION In conclusion, fibroblasts were able to retain their characteristics after various cryopreservation conditions with a slight decrease in viability that may be due to the thermal-cycling effect. However, further investigation on the longer cryopreservation periods should be conducted for other types of cells and cryo mediums to achieve optimal cryopreservation outcomes.
Collapse
Affiliation(s)
- Hafiz Muhaymin Mohamed
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Piraveenraj Sundar
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nur Aisyah Ahmad Ridwan
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Ai Jia Cheong
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nur Atiqah Mohamad Salleh
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Nadiah Sulaiman
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Fauzi Mh Busra
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia
| | - Manira Maarof
- Department of Tissue Engineering and Regenerative Medicine (DTERM), Faculty of Medicine, Universiti Kebangsaan Malaysia , Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia.
- Advance Bioactive Materials-Cells UKM Research Group, Universiti Kebangsaan Malaysia, Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
4
|
Fadilah NIM, Fauzi MB, Maarof M. Effect of Multiple-Cycle Collections of Conditioned Media from Different Cell Sources towards Fibroblasts in In Vitro Wound Healing Model. Pharmaceutics 2024; 16:767. [PMID: 38931888 PMCID: PMC11207063 DOI: 10.3390/pharmaceutics16060767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/23/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Conditioned media refers to a collection of the used cell culture media. The goal of this study was to evaluate the possible impacts of different conditioned media collected across a number of cycles on the fibroblast proliferation, migration, and profiles of protein release. Human dermal fibroblast (HDF) cells and Wharton jelly mesenchymal stem cells (WJMSC) were cultured and incubated for 3 days prior to being harvested as cycle-1 using the serum-free media F12:DMEM and DMEM, respectively. The procedures were repeatedly carried out until the fifth cycle of conditioned media collection. An in-vitro scratch assay was conducted to measure the effectiveness of wound healing. Collagen hydrogel was combined separately with both the Wharton jelly-conditioned medium (WJCM) and the dermal fibroblast-conditioned medium (DFCM) in order to evaluate the protein release profile. The conditioned medium from many cycles had a lower level of fibroblast attachment than the control (complete medium); however, the growth rate increased from 100 to 250 h-1, when supplemented with a conditioned medium collected from multiple cycles. The wound scratch assay showed that fibroblast cell migration was significantly increased by repeating cycles up to cycle-5 of DFCM, reaching 98.73 ± 1.11%. This was faster than the rate of migration observed in the cycle-5 of the WJCM group, which was 27.45 ± 5.55%. Collagen hydrogel from multiple cycles of DFCM and WJCM had a similar protein release profile. These findings demonstrate the potential for employing repeated cycles of DFCM- and WJCM-released proteins with collagen hydrogel for applications in wound healing.
Collapse
Affiliation(s)
| | | | - Manira Maarof
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.I.M.F.); (M.B.F.)
| |
Collapse
|
5
|
Kondej K, Zawrzykraj M, Czerwiec K, Deptuła M, Tymińska A, Pikuła M. Bioengineering Skin Substitutes for Wound Management-Perspectives and Challenges. Int J Mol Sci 2024; 25:3702. [PMID: 38612513 PMCID: PMC11011330 DOI: 10.3390/ijms25073702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/22/2024] [Accepted: 03/23/2024] [Indexed: 04/14/2024] Open
Abstract
Non-healing wounds and skin losses constitute significant challenges for modern medicine and pharmacology. Conventional methods of wound treatment are effective in basic healthcare; however, they are insufficient in managing chronic wound and large skin defects, so novel, alternative methods of therapy are sought. Among the potentially innovative procedures, the use of skin substitutes may be a promising therapeutic method. Skin substitutes are a heterogeneous group of materials that are used to heal and close wounds and temporarily or permanently fulfill the functions of the skin. Classification can be based on the structure or type (biological and synthetic). Simple constructs (class I) have been widely researched over the years, and can be used in burns and ulcers. More complex substitutes (class II and III) are still studied, but these may be utilized in patients with deep skin defects. In addition, 3D bioprinting is a rapidly developing method used to create advanced skin constructs and their appendages. The aforementioned therapies represent an opportunity for treating patients with diabetic foot ulcers or deep skin burns. Despite these significant developments, further clinical trials are needed to allow the use skin substitutes in the personalized treatment of chronic wounds.
Collapse
Affiliation(s)
- Karolina Kondej
- Department of Plastic Surgery, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Małgorzata Zawrzykraj
- Department of Clinical Anatomy, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.Z.); (K.C.)
| | - Katarzyna Czerwiec
- Department of Clinical Anatomy, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.Z.); (K.C.)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| | - Agata Tymińska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (A.T.)
| |
Collapse
|
6
|
Adipose-Derived Stem Cells in Reinforced Collagen Gel: A Comparison between Two Approaches to Differentiation towards Smooth Muscle Cells. Int J Mol Sci 2023; 24:ijms24065692. [PMID: 36982766 PMCID: PMC10058441 DOI: 10.3390/ijms24065692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/11/2023] [Indexed: 03/19/2023] Open
Abstract
Scaffolds made of degradable polymers, such as collagen, polyesters or polysaccharides, are promising matrices for fabrication of bioartificial vascular grafts or patches. In this study, collagen isolated from porcine skin was processed into a gel, reinforced with collagen particles and with incorporated adipose tissue-derived stem cells (ASCs). The cell-material constructs were then incubated in a DMEM medium with 2% of FS (DMEM_part), with added polyvinylalcohol nanofibers (PVA_part sample), and for ASCs differentiation towards smooth muscle cells (SMCs), the medium was supplemented either with human platelet lysate released from PVA nanofibers (PVA_PL_part) or with TGF-β1 + BMP-4 (TGF + BMP_part). The constructs were further endothelialised with human umbilical vein endothelial cells (ECs). The immunofluorescence staining of alpha-actin and calponin, and von Willebrand factor, was performed. The proteins involved in cell differentiation, the extracellular matrix (ECM) proteins, and ECM remodelling proteins were evaluated by mass spectrometry on day 12 of culture. Mechanical properties of the gels with ASCs were measured via an unconfined compression test on day 5. Gels evinced limited planar shrinkage, but it was higher in endothelialised TGF + BMP_part gel. Both PVA_PL_part samples and TGF + BMP_part samples supported ASC growth and differentiation towards SMCs, but only PVA_PL_part supported homogeneous endothelialisation. Young modulus of elasticity increased in all samples compared to day 0, and PVA_PL_part gel evinced a slightly higher ratio of elastic energy. The results suggest that PVA_PL_part collagen construct has the highest potential to remodel into a functional vascular wall.
Collapse
|
7
|
Braga GCD, Camargo CP, Harmsen MC, Correia AT, Souza S, Seelaender M, Nunes VA, dos Santos JF, Neri EA, Valadão IC, Moreira LFP, Gemperli R. A modified hydrogel production protocol to decrease cellular content. Acta Cir Bras 2022; 37:e371005. [PMID: 36542042 PMCID: PMC9762429 DOI: 10.1590/acb371005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/17/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE To analyze the cytotoxicity and cell in porcine-derived decellularized skin matrix. METHODS We analyzed the effect of multiple decellularization processes by histological analysis, DNA quantification, and flow cytometry. Subsequently, we analyzed the most appropriate hydrogel concentration to minimize cytotoxicity on fibroblast culture and to maximize cell proliferation. RESULTS After the fourth decellularization, the DNA quantification showed the lowest DNA concentration (< 50 ng/mg). Histological analysis showed no cell components in the hydrogel. Moreover, hematoxylin and eosin showed a heterogeneous structure of collagen fibers. The best hydrogel concentration ranged from 3 to 25%, and there was no significant difference between the 24 hours and seven days. CONCLUSIONS The process of hydrogel production was effective for removing cells and DNA elements. The best hydrogel concentration ranged from 3 to 25%.
Collapse
Affiliation(s)
- Gabriela Catão Diniz Braga
- Bachelor. Universidade de São Paulo – Discipline of Plastic Surgery, Microsurgery and Plastic Surgery Laboratory – School of Medicine – São Paulo (SP), Brazil
| | - Cristina Pires Camargo
- PhD. Universidade de São Paulo – Discipline of Plastic Surgery, Microsurgery and Plastic Surgery Laboratory – School of Medicine – São Paulo (SP), Brazil.,Corresponding author:
- (55 11) 30620415
| | - Martin Conrad Harmsen
- PhD. Associate professor. University Medical Center Groningen – Laboratory for Cardiovascular Regenerative Medicine – Department of Pathology and Medical Biology – Hanzeplein 1, Netherlands
| | - Aristides Tadeu Correia
- PhD. Universidade de São Paulo – Department of Cardiopneumology – Thoracic Surgery Research Laboratory – Heart Institute of School of Medicine – São Paulo (SP), Brazil
| | - Sonia Souza
- Bachelor. Universidade de São Paulo – Department of Cardiopneumology – Cardiovascular Surgery and Circulatory Physiopathology Laboratory – School of Medicine – São Paulo (SP), Brazil
| | - Marilia Seelaender
- PhD. Associate professor. Universidade de São Paulo – Department of Clinical Surgery – School of Medicine – São Paulo (SP), Brazil
| | - Viviane Araujo Nunes
- PhD. Associate professor. Universidade de São Paulo – Department of Biotechnology – School of Arts, Sciences and Humanities – São Paulo (SP), Brazil
| | - Jeniffer Farias dos Santos
- PhD. Universidade de São Paulo – Department of Biotechnology – School of Arts, Sciences and Humanities – São Paulo (SP), Brazil
| | - Elida Adalgisa Neri
- PhD. Universidade de São Paulo – Laboratory of Genetics and Molecular Cardiology – Heart Institute – School of Medicine – São Paulo (SP), Brazil
| | - Iuri Cordeiro Valadão
- PhD. Universidade de São Paulo – Laboratory of Genetics and Molecular Cardiology – Heart Institute – School of Medicine – São Paulo (SP), Brazil
| | - Luiz Felipe Pinho Moreira
- PhD. Associate professor. Universidade de São Paulo – Department of Cardiopneumology, Cardiovascular Surgery and Circulatory Physiopathology Laboratory – School of Medicine – São Paulo (SP), Brazil
| | - Rolf Gemperli
- PhD. Full professor. Universidade de São Paulo – Discipline of Plastic Surgery, Microsurgery and Plastic Surgery Laboratory – School of Medicine – São Paulo (SP) Brazil
| |
Collapse
|
8
|
Subramaniam T, Shaiful Hadi N, Sulaiman S, Fauzi MB, Hj Idrus RB, Chowdhury SR, Law JX, Maarof M. Comparison of three different skin substitutes in promoting wound healing in an ovine model. Burns 2022; 48:1198-1208. [PMID: 34893370 DOI: 10.1016/j.burns.2021.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/23/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022]
Abstract
Skin substitutes are designed dressings intended to promote wound closure. In previous in vitro and in vivo studies on small animal, an acellular skin patch made of collagen hydrogel with dermal fibroblast conditioned medium (Col-DFCM), a collagen sponge scaffold with freshly harvested skin cells (OTC), and a platelet-rich-plasma gel with freshly harvested skin cells (PRP) have been developed and tested for immediate treatment of full-thickness wound. However, to determine the safety and efficacy of these skin patches for clinical applications, further study in a large animal model is needed. The aim of this study is to evaluate the potential of Col-DFCM, OTC and PRP in treating full-thickness wound in an ovine model via histological analysis and immunohistochemistry staining were performed, with the untreated (NT) group serving as the control. Gross examination was conducted on day 7, 14 and 21 to determine the wound closure rate. The findings of percentage of wound size reduction showed that the wound healed fastest in the presence of Col-DFCM (91.34 ± 23.35%) followed by OTC (84.49 ± 23.13%), PRP (77.73 ± 20.9%) and NT group (73.94 ± 23.71%). Histological evaluation with Hematoxylin & Eosin (H & E) and Masson's trichrome staining was used to study the structure of the wound area. The results showed that OTC treated wound was more mature as indicated by the presence of a thinner epidermis followed by the Col-DFCM, PRP and NT group. Immunohistochemistry analysis also confirmed the integrity and maturity of the regenerated skin, with positive expression of cytokeratin 10 (CK10) and involucrin in the epidermal layer. In conclusion, Col-DFCM, OTC and PRP treatments promote healing of full-thickness wound and have the potential to be used clinically for rapid treatment of full-thickness wound.
Collapse
Affiliation(s)
- Thayaalini Subramaniam
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Nursharafana Shaiful Hadi
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Shamsul Sulaiman
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Mh Busra Fauzi
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Ruszymah Bt Hj Idrus
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia; Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Shiplu Roy Chowdhury
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Jia Xian Law
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia
| | - Manira Maarof
- Center for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras 56000, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Md Fadilah NI, Mohd Abdul Kader Jailani MS, Badrul Hisham MAI, Sunthar Raj N, Shamsuddin SA, Ng MH, Fauzi MB, Maarof M. Cell secretomes for wound healing and tissue regeneration: Next generation acellular based tissue engineered products. J Tissue Eng 2022; 13:20417314221114273. [PMID: 35923177 PMCID: PMC9340325 DOI: 10.1177/20417314221114273] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/01/2022] [Indexed: 12/20/2022] Open
Abstract
Wound represents a significant socioeconomic burden for both affected individuals and as a whole healthcare system. Accordingly, stem cells have garnered attention due to their differentiation capacity and ability to aid tissue regeneration by releasing biologically active molecules, found in the cells' cultivated medium which known as conditioned medium (CM) or secretomes. This acellular approach provides a huge advantage over conventional treatment options, which are mainly used cellular treatment at wound closure. Interestingly, the secretomes contained the cell-secreted proteins such as growth factors, cytokines, chemokines, extracellular matrix (ECM), and small molecules including metabolites, microvesicles, and exosomes. This review aims to provide a general view on secretomes and how it is proven to have great potential in accelerating wound healing. Utilizing the use of secretomes with its secreted proteins and suitable biomaterials for fabrications of acellular skin substitutes can be promising in treating skin loss and accelerate the healing process.
Collapse
Affiliation(s)
- Nur Izzah Md Fadilah
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | | | - Muhd Aliff Iqmal Badrul Hisham
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Nithiaraj Sunthar Raj
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Sharen Aini Shamsuddin
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| | - Manira Maarof
- Centre for Tissue Engineering and Regenerative
Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur,
Malaysia
| |
Collapse
|
10
|
Zawani M, Fauzi MB. Epigallocatechin Gallate: The Emerging Wound Healing Potential of Multifunctional Biomaterials for Future Precision Medicine Treatment Strategies. Polymers (Basel) 2021; 13:3656. [PMID: 34771213 PMCID: PMC8587897 DOI: 10.3390/polym13213656] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022] Open
Abstract
Immediate treatment for cutaneous injuries is a realistic approach to improve the healing rate and minimise the risk of complications. Multifunctional biomaterials have been proven to be a potential strategy for chronic skin wound management, especially for future advancements in precision medicine. Hence, antioxidant incorporated biomaterials play a vital role in the new era of tissue engineering. A bibliographic investigation was conducted on articles focusing on in vitro, in vivo, and clinical studies that evaluate the effect and the antioxidants mechanism exerted by epigallocatechin gallate (EGCG) in wound healing and its ability to act as reactive oxygen species (ROS) scavengers. Over the years, EGCG has been proven to be a potent antioxidant efficient for wound healing purposes. Therefore, several novel studies were included in this article to shed light on EGCG incorporated biomaterials over five years of research. However, the related papers under this review's scope are limited in number. All the studies showed that biomaterials with scavenging ability have a great potential to combat chronic wounds and assist the wound healing process against oxidative damage. However, the promising concept has faced challenges extending beyond the trial phase, whereby the implementation of these biomaterials, when exposed to an oxidative stress environment, may disrupt cell proliferation and tissue regeneration after transplantation. Therefore, thorough research should be executed to ensure a successful therapy.
Collapse
Affiliation(s)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
11
|
Nike DU, Katas H, Mohd NF, Hiraoka Y, Tabata Y, Idrus RBH, Fauzi MB. Characterisation of Rapid In Situ Forming Gelipin Hydrogel for Future Use in Irregular Deep Cutaneous Wound Healing. Polymers (Basel) 2021; 13:3152. [PMID: 34578052 PMCID: PMC8468405 DOI: 10.3390/polym13183152] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/08/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
The irregular deep chronic wound is a grand challenge to be healed due to multiple factors including slow angiogenesis that causing regenerated tissue failure. The narrow gap of deep wounds could hinder and slow down normal wound healing. Thus, the current study aimed to develop a polymerised genipin-crosslinked gelatin (gelipin) hydrogel (GNP_GH) as a potential biodegradable filler for the abovementioned limitations. Briefly, GNP_GH bioscaffolds have been developed successfully within three-minute polymerisation at room temperature (22-24 °C). The physicochemical and biocompatibility of GNP_GH bioscaffolds were respectively evaluated. Amongst GNP_GH groups, the 0.1%GNP_GH10% displayed the highest injectability (97.3 ± 0.6%). Meanwhile, the 0.5%GNP_GH15% degraded within more than two weeks with optimum swelling capacity (108.83 ± 15.7%) and higher mechanical strength (22.6 ± 3.9 kPa) than non-crosslinked gelatin hydrogel 15% (NC_GH15%). Furthermore, 0.1%GNP_GH15% offered higher porosity (>80%) and lower wettability (48.7 ± 0.3) than NC_GH15%. Surface and cross-section SEM photographs displayed an interconnected porous structure for all GNP_GH groups. The EDX spectra and maps represented no major changes after GNP modification. Moreover, no toxicity effect of GNP_GH against dermal fibroblasts was shown during the biocompatibility test. In conclusion, the abovementioned findings indicated that gelipin has excellent physicochemical properties and acceptable biocompatibility as an acellular rapid treatment for future use in irregular deep cutaneous wounds.
Collapse
Affiliation(s)
- Dewi Utami Nike
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Haliza Katas
- Centre for Drug Delivery Technology, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Nor Fatimah Mohd
- Kumpulan Perubatan Johor Ampang Puteri Specialist Hospital, Ampang, Kuala Lumpur 68000, Malaysia;
| | - Yosuke Hiraoka
- Biomaterial Group, R&D Center, Yao City 581-0000, Japan;
| | - Yasuhiko Tabata
- Department of Biomaterials, Sakyo-ku, Kyoto 606-8500, Japan;
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia; (D.U.N.); (R.B.H.I.)
| |
Collapse
|
12
|
Injectable Hydrogels for Chronic Skin Wound Management: A Concise Review. Biomedicines 2021; 9:biomedicines9050527. [PMID: 34068490 PMCID: PMC8150772 DOI: 10.3390/biomedicines9050527] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetic foot ulcers (DFU) are a predominant impediment among diabetic patients, increasing morbidity and wound care costs. There are various strategies including using biomaterials have been explored for the management of DFU. This paper will review the injectable hydrogel application as the most studied polymer-based hydrogel based on published journals and articles. The main key factors that will be discussed in chronic wounds focusing on diabetic ulcers include the socioeconomic burden of chronic wounds, biomaterials implicated by the government for DFU management, commercial hydrogel product, mechanism of injectable hydrogel, the current study of novel injectable hydrogel and the future perspectives of injectable hydrogel for the management of DFU.
Collapse
|
13
|
Hybrid Collagen Hydrogel/Chondroitin-4-Sulphate Fortified with Dermal Fibroblast Conditioned Medium for Skin Therapeutic Application. Polymers (Basel) 2021; 13:polym13040508. [PMID: 33567703 PMCID: PMC7914873 DOI: 10.3390/polym13040508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/30/2022] Open
Abstract
The current strategy for rapid wound healing treatment involves combining a biomaterial and cell-secreted proteins or biomolecules. This study was aimed at characterizing 3-dimensional (3D) collagen hydrogels fortified with dermal fibroblast-conditioned medium (DFCM) as a readily available acellular skin substitute. Confluent fibroblasts were cultured with serum-free keratinocyte-specific medium (KM1 and KM2) and fibroblast-specific medium (FM) to obtain DFCM. Subsequently, the DFCM was mixed with collagen (Col) hydrogel and chondroitin-4-sulphate (C4S) to fabricate 3D constructs termed Col/C4S/DFCM-KM1, Col/C4S/DFCM-KM2, and Col/C4S/DFCM-FM. The constructs successfully formed soft, semi-solid and translucent hydrogels within 1 h of incubation at 37 °C with strength of <2.5 Newton (N). The Col/C4S/DFCM demonstrated significantly lower turbidity compared to the control groups. The Col/C4S/DFCM also showed a lower percentage of porosity (KM1: 35.15 ± 9.76%; KM2: 6.85 ± 1.60%; FM: 14.14 ± 7.65%) compared to the Col (105.14 ± 11.87%) and Col/C4S (143.44 ± 27.72%) constructs. There were no changes in both swelling and degradation among all constructs. Fourier transform infrared spectrometry showed that all groups consisted of oxygen–hydrogen bonds (O-H) and amide I, II, and III. In conclusion, the Col/C4S/DFCM constructs maintain the characteristics of native collagen and can synergistically deliver essential biomolecules for future use in skin therapeutic applications.
Collapse
|
14
|
Loh EYX, Fauzi MB, Ng MH, Ng PY, Ng SF, Mohd Amin MCI. Insight into delivery of dermal fibroblast by non-biodegradable bacterial nanocellulose composite hydrogel on wound healing. Int J Biol Macromol 2020; 159:497-509. [DOI: 10.1016/j.ijbiomac.2020.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/19/2020] [Accepted: 05/02/2020] [Indexed: 11/26/2022]
|
15
|
Przekora A. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro? Cells 2020; 9:cells9071622. [PMID: 32640572 PMCID: PMC7407512 DOI: 10.3390/cells9071622] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic wounds occur as a consequence of a prolonged inflammatory phase during the healing process, which precludes skin regeneration. Typical treatment for chronic wounds includes application of autografts, allografts collected from cadaver, and topical delivery of antioxidant, anti-inflammatory, and antibacterial agents. Nevertheless, the mentioned therapies are not sufficient for extensive or deep wounds. Moreover, application of allogeneic skin grafts carries high risk of rejection and treatment failure. Advanced therapies for chronic wounds involve application of bioengineered artificial skin substitutes to overcome graft rejection as well as topical delivery of mesenchymal stem cells to reduce inflammation and accelerate the healing process. This review focuses on the concept of skin tissue engineering, which is a modern approach to chronic wound treatment. The aim of the article is to summarize common therapies for chronic wounds and recent achievements in the development of bioengineered artificial skin constructs, including analysis of biomaterials and cells widely used for skin graft production. This review also presents attempts to reconstruct nerves, pigmentation, and skin appendages (hair follicles, sweat glands) using artificial skin grafts as well as recent trends in the engineering of biomaterials, aiming to produce nanocomposite skin substitutes (nanofilled polymer composites) with controlled antibacterial activity. Finally, the article describes the composition, advantages, and limitations of both newly developed and commercially available bioengineered skin substitutes.
Collapse
Affiliation(s)
- Agata Przekora
- Department of Biochemistry and Biotechnology, Medical University of Lublin, Chodzki 1 Street, 20-093 Lublin, Poland
| |
Collapse
|
16
|
Griffin MF, desJardins-Park HE, Mascharak S, Borrelli MR, Longaker MT. Understanding the impact of fibroblast heterogeneity on skin fibrosis. Dis Model Mech 2020; 13:13/6/dmm044164. [PMID: 32541065 PMCID: PMC7328159 DOI: 10.1242/dmm.044164] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Tissue fibrosis is the deposition of excessive extracellular matrix and can occur as part of the body's natural wound healing process upon injury, or as a consequence of diseases such as systemic sclerosis. Skin fibrosis contributes to significant morbidity due to the prevalence of injuries resulting from trauma and burn. Fibroblasts, the principal cells of the dermis, synthesize extracellular matrix to maintain the skin during homeostasis and also play a pivotal role in all stages of wound healing. Although it was previously believed that fibroblasts are homogeneous and mostly quiescent cells, it has become increasingly recognized that numerous fibroblast subtypes with unique functions and morphologies exist. This Review provides an overview of fibroblast heterogeneity in the mammalian dermis. We explain how fibroblast identity relates to their developmental origin, anatomical site and precise location within the skin tissue architecture in both human and mouse dermis. We discuss current evidence for the varied functionality of fibroblasts within the dermis and the relationships between fibroblast subtypes, and explain the current understanding of how fibroblast subpopulations may be controlled through transcriptional regulatory networks and paracrine communications. We consider how fibroblast heterogeneity can influence wound healing and fibrosis, and how insight into fibroblast heterogeneity could lead to novel therapeutic developments and targets for skin fibrosis. Finally, we contemplate how future studies should be shaped to implement knowledge of fibroblast heterogeneity into clinical practice in order to lessen the burden of skin fibrosis. Summary: This Review discusses the multifaceted aspects of fibroblast heterogeneity and the different roles of fibroblast subpopulations to help overcome skin scarring and fibrosis.
Collapse
Affiliation(s)
- Michelle F Griffin
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Heather E desJardins-Park
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Shamik Mascharak
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mimi R Borrelli
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA.,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic Surgery, Department of Surgery, Stanford, CA 94305, USA .,Stanford Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|