1
|
Manohar M, Shetty A, Lobo CL, Jain P, Hebbar S, Dhas N, Sutar KP, Sukeewandhi J, Perumalsamy H, Balusamy SR, Jamous YF, Dubey A, El-Zahaby SA. Emerging trends in chitosan based colloidal drug delivery systems: A translational journey from research to practice. Carbohydr Polym 2025; 360:123604. [PMID: 40399015 DOI: 10.1016/j.carbpol.2025.123604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/01/2025] [Accepted: 04/10/2025] [Indexed: 05/23/2025]
Abstract
Chitosan, a natural polymer derived from chitin, has garnered significant interest in pharmaceutical and biomedical applications due to its distinctive properties, such as controlled drug release, mucoadhesive capabilities, in situ gelling property, enhancement of permeation, and efflux pump inhibitory effect. In this review, various types of chitosan based colloidal drug delivery systems such as vesicular, and particulate systems were discussed along with their role in pre-clinical biomedical applications. Some important clinical applications of chitosan-based drug delivery systems in treating major chronic diseases were also discussed. Using Chitosan in delivery of drugs and gene therapy had many beneficial outcomes, however, obtaining clinical acceptance and regulatory approval requires a careful approach for proving efficacy and safety. In order to present the current status of chitosan-based drug delivery systems, filled patents employing chitosan derivatives were also part of this review. This will help forward the use of chitosan-based drug delivery system from research to practice. Finally, the future prospects for chitosan-based delivery systems were discussed.
Collapse
Affiliation(s)
- Mahadev Manohar
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru, India
| | - Amitha Shetty
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru, India
| | - Cynthia Lizzie Lobo
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru, India
| | - Praneetha Jain
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmacy Practice, Mangaluru, India
| | - Srinivas Hebbar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Namdev Dhas
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Kishori P Sutar
- Department of Pharmaceutics, KLE College of Pharmacy, Belagavi, KLE Academy of Higher Education and Research, Belagavi, India
| | - Johan Sukeewandhi
- Faculty of Biotechnology, University of Surabaya, Surabaya 60293, Indonesia
| | - Haribalan Perumalsamy
- Center for Creative Convergence Education, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Sri Renukadevi Balusamy
- Department of Food Science and Biotechnology, Sejong University, Gwangjin-gu, Seoul 05006, Republic of Korea.
| | - Yahya F Jamous
- Vaccine and Bioprocessing National Center, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Akhilesh Dubey
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangaluru, India.
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| |
Collapse
|
2
|
Peng C, Luan H, Shang Q, Xiang W, Yasin P, Song X. Mannosamine-Modified Poly(lactic- co-glycolic acid)-Polyethylene Glycol Nanoparticles for the Targeted Delivery of Rifapentine and Isoniazid in Tuberculosis Therapy. Bioconjug Chem 2025; 36:1021-1033. [PMID: 40262736 DOI: 10.1021/acs.bioconjchem.5c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, is the leading cause of mortality attributed to a single infectious agent. Following macrophage invasion, M. tuberculosis uses various mechanisms to evade immune responses and to resist antituberculosis drugs. This study aimed to develop a targeted drug delivery system utilizing mannosamine (MAN)-modified nanoparticles (NPs) composed of poly(lactic-co-glycolic acid)-polyethylene glycol (PLGA-PEG), loaded with rifapentine and isoniazid, to enhance macrophage-directed therapy and enhance bacterial elimination. PLGA-PEG copolymer was modified with mannosamine through an amidation reaction. Rifapentine- and isoniazid-loaded PLGA-PEG-MAN NPs were synthesized by using the double emulsion solvent evaporation technique. The NPs exhibited an average particle size of 117.67 nm and displayed favorable physicochemical properties without evidence of cellular or hemolytic toxicity. The drug loading rates were 11.73% for rifapentine and 5.85% for isoniazid. Sustained drug release was achieved over a period exceeding 72 h, with antibacterial activity remaining intact during encapsulation. Synergistic bactericidal effects were noted. Additionally, mannosamine-modified NPs enhanced the phagocytic activity of macrophages via mannose receptor-mediated endocytosis, thereby improving drug delivery efficiency and significantly boosting the antibacterial efficacy of the NPs within macrophages. Pathological staining and biochemical analysis of rat organs following intravenous injection indicated that the NPs did not cause any significant toxic side effects in vivo. The findings of this study indicate that mannosamine-modified PLGA-PEG NPs loaded with rifapentine and isoniazid represent a promising drug delivery system for targeting macrophages to enhance the efficacy of antitubercular therapy.
Collapse
Affiliation(s)
- Cong Peng
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Haopeng Luan
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Qisong Shang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Wei Xiang
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Parhat Yasin
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| | - Xinghua Song
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830002, China
| |
Collapse
|
3
|
Yan D, Li X, Wang H, Li B, Wang W, Liao Y, Tang BZ, Wang D. NIR-II aggregation-induced emission nanoparticles camouflaged with preactivated macrophage membranes for phototheranostics of pulmonary tuberculosis. Nat Protoc 2025:10.1038/s41596-025-01146-8. [PMID: 40210746 DOI: 10.1038/s41596-025-01146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/10/2025] [Indexed: 04/12/2025]
Abstract
Phototheranostics, which allows simultaneous diagnosis and therapy, offers notable advantages in terms of noninvasiveness, controllability and negligible drug resistance, presenting a promising approach for disease treatment. By integrating second near-infrared (NIR-II, 1,000-1,700 nm) phototheranostic agents characterized by aggregation-induced emission (AIE) and cell membranes with specific targeting capacity, we have developed a versatile type of biomimetic nanoparticle (NP) for precise phototheranostics of pulmonary tuberculosis (TB). Coating the phototheranostic agents with preactivated macrophage membranes results in the formation of biomimetic NPs, which exhibit specific binding to TB through a lesion-pathogen dual-targeting strategy, allowing the accurate detection of Mycobacterium tuberculosis via NIR-II fluorescence imaging and precise photothermal therapy using the irradiation of a 1,064 nm laser. In comparison with traditional treatments, small individual granulomas (0.2 mm in diameter) in TB-infected mice are visualized, and improved antibacterial effects are achieved upon NP administration. Here we present a standardized workflow for the synthesis of the NIR-II AIE agents, their use for the fabrication of the biomimetic NPs and their in vitro and in vivo applications as phototheranostics against M. tuberculosis. The preparation and characterization of the NIR-II AIE agents requires ~8 d, the synthesis and characterization of the phototheranostic NPs requires ~8 d, the validation of in vitro targeting capacity and photothermal eradication requires ~26 d, and the in vivo NIR-II fluorescence imaging and imaging-guided photothermal therapy requires ~74 d. All procedures are straightforward and suitable for clinicians or researchers with prior training in organic synthesis and biomedical engineering.
Collapse
Affiliation(s)
- Dingyuan Yan
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Xue Li
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Huanhuan Wang
- Institute for Engineering Medicine, Kunming Medical University, Kunming, China
| | - Bin Li
- Institute for Engineering Medicine, Kunming Medical University, Kunming, China
| | - Wei Wang
- Institute for Engineering Medicine, Kunming Medical University, Kunming, China
| | - Yuhui Liao
- Institute for Engineering Medicine, Kunming Medical University, Kunming, China.
| | - Ben Zhong Tang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, China.
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
| |
Collapse
|
4
|
Luan H, Peng C, Yasin P, Shang Q, Xiang W, Song X. Mannosamine-Engineered Nanoparticles for Precision Rifapentine Delivery to Macrophages: Advancing Targeted Therapy Against Mycobacterium Tuberculosis. Drug Des Devel Ther 2025; 19:2081-2102. [PMID: 40129488 PMCID: PMC11931292 DOI: 10.2147/dddt.s505682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Background Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of death among infectious diseases. Enhancing the ability of anti-tuberculosis drugs to eradicate Mycobacterium tuberculosis within host cells remains a significant challenge. Methods A mannosamine-modified nanoparticle delivery system was developed using poly(lactic-co-glycolic acid) (PLGA) copolymers to enhance the targeted delivery of rifapentine (RPT) to macrophages. D-mannosamine was conjugated to PLGA-polyethylene glycol (PLGA-PEG) copolymers through EDC/NHS coupling chemistry, and the resultant RPT-MAN-PLGA-PEG nanoparticles (NPs) were prepared through a combination of phacoemulsification and solvent evaporation methods. The physicochemical properties, toxicity, in vitro drug release profiles, stability, cellular uptake, and anti-TB efficacy of the NPs were systematically evaluated. Results The RPT-MAN-PLGA-PEG NPs had a mean particle size of 108.2 ± 7.2 nm, with encapsulation efficiency and drug loading rates of 81.2 ± 6.3% and 13.7 ± 0.7%, respectively. RPT release from the NPs was sustained for over 60 hours. Notably, the phagocytic uptake of the MAN-PLGA NPs by macrophages was significantly higher compared to PLGA-PEG NPs. Both NPs improved pharmacokinetic parameters without inducing significant organ toxicity. The minimum inhibitory concentration for the NPs was 0.047 μg/mL, compared to 0.2 μg/mL for free RPT. Conclusion The engineered RPT-MAN-PLGA-PEG NPs effectively enhanced macrophage uptake in vitro and facilitated the intracellular clearance of Mtb. This nanoparticle-based delivery system offers a promising approach for improving the precision of anti-TB therapy, extending drug release, optimizing pharmacokinetic profiles, augmenting antimicrobial efficacy, and mitigating drug-related toxicities.
Collapse
Affiliation(s)
- Haopeng Luan
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Cong Peng
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Parhat Yasin
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Qisong Shang
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Wei Xiang
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| | - Xinghua Song
- Department of Spine Surgery, the Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830002, People’s Republic of China
| |
Collapse
|
5
|
Rojekar S, Gholap AD, Togre N, Bhoj P, Haeck C, Hatvate N, Singh N, Vitore J, Dhoble S, Kashid S, Patravale V. Current status of mannose receptor-targeted drug delivery for improved anti-HIV therapy. J Control Release 2024; 372:494-521. [PMID: 38849091 DOI: 10.1016/j.jconrel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/09/2024]
Abstract
In the pursuit of achieving better therapeutic outcomes in the treatment of HIV, innovative drug delivery strategies have been extensively explored. Mannose receptors, which are primarily found on macrophages and dendritic cells, offer promising targets for drug delivery due to their involvement in HIV pathogenesis. This review article comprehensively evaluates recent drug delivery system advancements targeting the mannose receptor. We have systematically described recent developments in creating and utilizing drug delivery platforms, including nanoparticles, liposomes, micelles, noisomes, dendrimers, and other nanocarrier systems targeted at the mannose receptor. These strategies aim to enhance drug delivery specificity, bioavailability, and therapeutic efficacy while decreasing off-target effects and systemic toxicity. Furthermore, the article delves into how mannose receptors and HIV interact, highlighting the potential for exploiting this interaction to enhance drug delivery to infected cells. The review covers essential topics, such as the rational design of nanocarriers for mannose receptor recognition, the impact of physicochemical properties on drug delivery performance, and how targeted delivery affects the pharmacokinetics and pharmacodynamics of anti-HIV agents. The challenges of these novel strategies, including immunogenicity, stability, and scalability, and future research directions in this rapidly growing area are discussed. The knowledge synthesis presented in this review underscores the potential of mannose receptor-based targeted drug delivery as a promising avenue for advancing HIV treatment. By leveraging the unique properties of mannose receptors, researchers can design drug delivery systems that cater to individual needs, overcome existing limitations, and create more effective and patient-friendly treatments in the ongoing fight against HIV/AIDS.
Collapse
Affiliation(s)
- Satish Rojekar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Amol D Gholap
- Department of Pharmaceutics, St. John Institute of Pharmacy and Research, Palghar 401404, Maharashtra, India
| | - Namdev Togre
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Priyanka Bhoj
- Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Clement Haeck
- Population Council, , Center for Biomedical Research, 1230 York Avenue, New York, NY 10065, USA
| | - Navnath Hatvate
- Institute of Chemical Technology, Mumbai, Marathwada Campus, Jalna 431203, India
| | - Nidhi Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Kolkata 700054, India
| | - Jyotsna Vitore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Sagar Dhoble
- Department of Pharmacology and Toxicology, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - Snehal Kashid
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), Gujarat 382355, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, India.
| |
Collapse
|
6
|
Li B, Wang W, Zhao L, Wu Y, Li X, Yan D, Gao Q, Yan Y, Zhang J, Feng Y, Zheng J, Shu B, Wang J, Wang H, He L, Zhang Y, Pan M, Wang D, Tang BZ, Liao Y. Photothermal therapy of tuberculosis using targeting pre-activated macrophage membrane-coated nanoparticles. NATURE NANOTECHNOLOGY 2024; 19:834-845. [PMID: 38383890 DOI: 10.1038/s41565-024-01618-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Conventional antibiotics used for treating tuberculosis (TB) suffer from drug resistance and multiple complications. Here we propose a lesion-pathogen dual-targeting strategy for the management of TB by coating Mycobacterium-stimulated macrophage membranes onto polymeric cores encapsulated with an aggregation-induced emission photothermal agent that is excitable with a 1,064 nm laser. The coated nanoparticles carry specific receptors for Mycobacterium tuberculosis, which enables them to target tuberculous granulomas and internal M. tuberculosis simultaneously. In a mouse model of TB, intravenously injected nanoparticles image individual granulomas in situ in the lungs via signal emission in the near-infrared region IIb, with an imaging resolution much higher than that of clinical computed tomography. With 1,064 nm laser irradiation from outside the thoracic cavity, the photothermal effect generated by these nanoparticles eradicates the targeted M. tuberculosis and alleviates pathological damage and excessive inflammation in the lungs, resulting in a better therapeutic efficacy compared with a combination of first-line antibiotics. This precise photothermal modality that uses dual-targeted imaging in the near-infrared region IIb demonstrates a theranostic strategy for TB management.
Collapse
Affiliation(s)
- Bin Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
- School of Inspection, Ningxia Medical University, Yinchuan, China
- Institute of Translational Medicine, Department of Clinical Laboratory & Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Wei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Lu Zhao
- Institute of Translational Medicine, Department of Clinical Laboratory & Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Yunxia Wu
- Institute of Translational Medicine, Department of Clinical Laboratory & Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Xiaoxue Li
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Dingyuan Yan
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China
| | - Qiuxia Gao
- Institute of Translational Medicine, Department of Clinical Laboratory & Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Yan Yan
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Zhang
- Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, China
| | - Yi Feng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Bowen Shu
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Jiamei Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Huanhuan Wang
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Lingjie He
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China
| | - Yunlong Zhang
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mingliang Pan
- Department of Critical Care Medicine, Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dong Wang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
| | - Ben Zhong Tang
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, China.
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, China.
| | - Yuhui Liao
- Molecular Diagnosis and Treatment Center for Infectious Diseases, Dermatology Hospital of Southern Medical University, Guangzhou, China.
- School of Inspection, Ningxia Medical University, Yinchuan, China.
| |
Collapse
|
7
|
Luo Y, Chen H, Chen H, Xiu P, Zeng J, Song Y, Li T. Recent Advances in Nanotechnology-Based Strategies for Bone Tuberculosis Management. Pharmaceuticals (Basel) 2024; 17:170. [PMID: 38399384 PMCID: PMC10893314 DOI: 10.3390/ph17020170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Bone tuberculosis, an extrapulmonary manifestation of tuberculosis, presents unique treatment challenges, including its insidious onset and complex pathology. While advancements in anti-tubercular therapy have been made, the efficacy is often limited by difficulties in achieving targeted drug concentrations and avoiding systemic toxicity. The intricate bone structure and presence of granulomas further impede effective drug delivery. Nano-drug delivery systems have emerged as a promising alternative, offering the enhanced targeting of anti-tubercular drugs. These systems, characterized by their minute size and adaptable surface properties, can be tailored to improve drug solubility, stability, and bioavailability, while also responding to specific stimuli within the bone TB microenvironment for controlled drug release. Nano-drug delivery systems can encapsulate drugs for precise delivery to the infection site. A significant innovation is their integration with prosthetics or biomaterials, which aids in both drug delivery and bone reconstruction, addressing the infection and its osteological consequences. This review provides a comprehensive overview of the pathophysiology of bone tuberculosis and its current treatments, emphasizing their limitations. It then delves into the advancements in nano-drug delivery systems, discussing their design, functionality, and role in bone TB therapy. The review assesses their potential in preclinical research, particularly in targeted drug delivery, treatment efficacy, and a reduction of side effects. Finally, it highlights the transformative promise of nanotechnology in bone TB treatments and suggests future research directions in this evolving field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tao Li
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu 610041, China; (Y.L.); (H.C.); (H.C.); (P.X.); (J.Z.); (Y.S.)
| |
Collapse
|
8
|
Alwahsh W, Sahudin S, Alkhatib H, Bostanudin MF, Alwahsh M. Chitosan-Based Nanocarriers for Pulmonary and Intranasal Drug Delivery Systems: A Comprehensive Overview of their Applications. Curr Drug Targets 2024; 25:492-511. [PMID: 38676513 DOI: 10.2174/0113894501301747240417103321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 04/29/2024]
Abstract
The optimization of respiratory health is important, and one avenue for achieving this is through the application of both Pulmonary Drug Delivery System (PDDS) and Intranasal Delivery (IND). PDDS offers immediate delivery of medication to the respiratory system, providing advantages, such as sustained regional drug concentration, tunable drug release, extended duration of action, and enhanced patient compliance. IND, renowned for its non-invasive nature and swift onset of action, presents a promising path for advancement. Modern PDDS and IND utilize various polymers, among which chitosan (CS) stands out. CS is a biocompatible and biodegradable polysaccharide with unique physicochemical properties, making it well-suited for medical and pharmaceutical applications. The multiple positively charged amino groups present in CS facilitate its interaction with negatively charged mucous membranes, allowing CS to adsorb easily onto the mucosal surface. In addition, CS-based nanocarriers have been an important topic of research. Polymeric Nanoparticles (NPs), liposomes, dendrimers, microspheres, nanoemulsions, Solid Lipid Nanoparticles (SLNs), carbon nanotubes, and modified effective targeting systems compete as important ways of increasing pulmonary drug delivery with chitosan. This review covers the latest findings on CS-based nanocarriers and their applications.
Collapse
Affiliation(s)
- Wasan Alwahsh
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam Campus, 42300, Selangor, Malaysia
- Atta-Ur-Rahman Institute of Natural Products Discovery, Universiti Teknologi MARA, Puncak Alam Campus, 42300, Selangor, Malaysia
| | - Hatim Alkhatib
- Department of Pharmaceutics and Pharmaceutical Technology, School of Pharmacy, The University of Jordan, Amman, 11942, Jordan
| | | | - Mohammad Alwahsh
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, P.O. Box 130, Amman, 11733, Jordan
| |
Collapse
|
9
|
Primo LMDG, Roque-Borda CA, Carnero Canales CS, Caruso IP, de Lourenço IO, Colturato VMM, Sábio RM, de Melo FA, Vicente EF, Chorilli M, da Silva Barud H, Barbugli PA, Franzyk H, Hansen PR, Pavan FR. Antimicrobial peptides grafted onto the surface of N-acetylcysteine-chitosan nanoparticles can revitalize drugs against clinical isolates of Mycobacterium tuberculosis. Carbohydr Polym 2024; 323:121449. [PMID: 37940311 DOI: 10.1016/j.carbpol.2023.121449] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 11/10/2023]
Abstract
Tuberculosis is caused by Mycobacterium tuberculosis (MTB) and is the leading cause of death from infectious diseases in the World. The search for new antituberculosis drugs is a high priority, since several drug-resistant TB-strains have emerged. Many nanotechnology strategies are being explored to repurpose or revive drugs. An interesting approach is to graft antimicrobial peptides (AMPs) to antibiotic-loaded nanoparticles. The objective of the present work was to determine the anti-MTB activity of rifampicin-loaded N-acetylcysteine-chitosan-based nanoparticles (NPs), conjugated with the AMP Ctx(Ile21)-Ha; against clinical isolates (multi- and extensively-drug resistant) and the H37Rv strain. The modified chitosan and drug-loaded NPs were characterized with respect to their physicochemical stability and their antimycobacterial profile, which showed potent inhibition (MIC values <0.977 μg/mL) by the latter. Furthermore, their accumulation within macrophages and cytotoxicity were determined. To understand the possible mechanisms of action, an in silico study of the peptide against MTB membrane receptors was performed. The results presented herein demonstrate that antibiotic-loaded NPs grafted with an AMP can be a powerful tool for revitalizing drugs against multidrug-resistant M. tuberculosis strains, by launching multiple attacks against MTB. This approach could potentially serve as a novel treatment strategy for various long-term diseases requiring extended treatment periods.
Collapse
Affiliation(s)
- Laura Maria Duran Gleriani Primo
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Cesar Augusto Roque-Borda
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christian Shleider Carnero Canales
- Vicerrectorado de Investigación, Facultad de Ciencias Farmacéuticas bioquímicas y biotecnológicas, Universidad Católica de Santa María, Arequipa, Peru
| | - Icaro Putinhon Caruso
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Isabella Ottenio de Lourenço
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Vitória Maria Medalha Colturato
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Rafael Miguel Sábio
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Fernando Alves de Melo
- Department of Physics - Institute of Biosciences, Humanities and Exact Sciences (IBILCE), São Paulo State University (UNESP), 15054-000 São José do Rio Preto, São Paulo, Brazil
| | - Eduardo Festozo Vicente
- School of Sciences and Engineering, São Paulo State University (UNESP), Tupã, São Paulo, Brazil
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drug and Medicines, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil
| | - Hernane da Silva Barud
- Department of Biotechnology, Laboratory of Polymers and Biomaterials, University of Araraquara (UNIARA), Araraquara, São Paulo, Brazil
| | - Paula Aboud Barbugli
- Department of Dental Materials and Prosthodontics, School of Dentistry, Sao Paulo State University (UNESP), Araraquara, São Paulo, Brazil
| | - Henrik Franzyk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Paul Robert Hansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Tuberculosis Research Laboratory, School of Pharmaceutical Sciences, Araraquara, São Paulo, Brazil.
| |
Collapse
|
10
|
Ramachandran S, Prakash P, Mohtar N, Kumar KS, Parumasivam T. Review of inhalable nanoparticles for the pulmonary delivery of anti-tuberculosis drugs. Pharm Dev Technol 2023; 28:978-991. [PMID: 37937865 DOI: 10.1080/10837450.2023.2279691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/05/2023] [Indexed: 11/09/2023]
Abstract
Tuberculosis is an airborne disease caused by the pathogen, Mycobacterium tuberculosis, which predominantly affects the lungs. World Health Organization (WHO) has reported that about 85% of TB patients are cured with the existing 6-month antibiotic regimen. However, the lengthy oral administration of high-dose anti-TB drugs is associated with significant side effects and leads to drug resistance cases. Alternatively, reformulating existing anti-tubercular drugs into inhalable nanoparticulate systems is a promising strategy to overcome the challenges associated with oral treatment as they could enhance drug retention in the pulmonary region to achieve an optimal drug concentration in the infected lungs. Hence, this review provides an overview of the literature on inhalable nano-formulations for the delivery of anti-TB drugs, including their formulation techniques and preclinical evaluations between the years 2000 and 2020, gathered from electronic journals via online search engines such as Google Scholar and PubMed. Previous in vitro and in vivo studies highlighted that the nano-size, low toxicity, and high efficacy were among the factors influencing the fate of nanoparticulate system upon deposition in the lungs. Although many preclinical studies have shown that inhalable nanoparticles increased therapeutic efficacy and minimised adverse drug reactions when delivered through the pulmonary route, none of them has progressed into clinical trials to date. This could be attributed to the high cost of inhaled regimes due to the expensive production and characterisation of the nanoparticles as well as the need for an inhalation device as compared to the oral treatment. Another barrier could be the lack of medical acceptance due to insufficient number of trained staff to educate the patients on the correct usage of the inhalation device. Hence, these barriers should be addressed satisfactorily to make the inhaled nanoparticles regimen a reality for the treatment of TB.
Collapse
Affiliation(s)
- Sowmya Ramachandran
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Priyanka Prakash
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Noratiqah Mohtar
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - K Sudesh Kumar
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| | - Thaigarajan Parumasivam
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Pulau Pinang, Malaysia
| |
Collapse
|
11
|
Kumar M, Virmani T, Kumar G, Deshmukh R, Sharma A, Duarte S, Brandão P, Fonte P. Nanocarriers in Tuberculosis Treatment: Challenges and Delivery Strategies. Pharmaceuticals (Basel) 2023; 16:1360. [PMID: 37895831 PMCID: PMC10609727 DOI: 10.3390/ph16101360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
The World Health Organization identifies tuberculosis (TB), caused by Mycobacterium tuberculosis, as a leading infectious killer. Although conventional treatments for TB exist, they come with challenges such as a heavy pill regimen, prolonged treatment duration, and a strict schedule, leading to multidrug-resistant (MDR) and extensively drug-resistant (XDR) strains. The rise of MDR strains endangers future TB control. Despite these concerns, the hunt for an efficient treatment continues. One breakthrough has been the use of nanotechnology in medicines, presenting a novel approach for TB treatment. Nanocarriers, such as lipid nanoparticles, nanosuspensions, liposomes, and polymeric micelles, facilitate targeted delivery of anti-TB drugs. The benefits of nanocarriers include reduced drug doses, fewer side effects, improved drug solubility, better bioavailability, and improved patient compliance, speeding up recovery. Additionally, nanocarriers can be made even more targeted by linking them with ligands such as mannose or hyaluronic acid. This review explores these innovative TB treatments, including studies on nanocarriers containing anti-TB drugs and related patents.
Collapse
Affiliation(s)
- Mahesh Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Tarun Virmani
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Girish Kumar
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Ashwani Sharma
- School of Pharmaceutical Sciences, Modern Vidya Niketan University, Palwal 121105, India; (M.K.); (G.K.); (A.S.)
| | - Sofia Duarte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Pedro Brandão
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health & Science, 2829-511 Almada, Portugal
- CQC-IMS, Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal
| | - Pedro Fonte
- iBB—Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, University of Lisboa, 1049-001 Lisbon, Portugal; (S.D.); (P.B.)
- Associate Laboratory i4HB—Institute for Health and Bio-Economy, Instituto Superior Técnico, University of Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
- Center for Marine Sciences (CCMar), University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
- Department of Chemistry and Pharmacy, Faculty of Sciences and Technology, University of Algarve, Gambelas Campus, 8005-139 Faro, Portugal
| |
Collapse
|
12
|
Liang Q, Zhang P, Zhang L, Luan H, Li X, Xiang H, Jing S, Song X. Development of tetracycline-modified nanoparticles for bone-targeted delivery of anti-tubercular drug. Front Bioeng Biotechnol 2023; 11:1207520. [PMID: 37635999 PMCID: PMC10450143 DOI: 10.3389/fbioe.2023.1207520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Background: Since the poor response to existing anti-tuberculosis drugs and low drug concentration in local bone tissues, the traditional drug therapy does not result in satisfactory treatment of osteoarticular tuberculosis. Thus, we report a rifapentine release system with imparted bone targeting potential using tetracycline (TC) -modified nanoparticles (NPs). Methods: TC was conjugated to PLGA-PEG copolymer via a DCC/NHS technique. Rifapentine-loaded NPs were prepared by premix membrane emulsification technique. The resulting NPs were characterized in terms of physicochemical characterization, hemolytic study, cytotoxicity, bone mineral binding ability, in vitro drug release, stability test and antitubercular activity. The pharmacokinetic and biodistribution studies were also performed in mice. Results: Rifapentine loaded TC-PLGA-PEG NPs were proved to be 48.8 nm in size with encapsulation efficiency and drug loading of 83.3% ± 5.5% and 8.1% ± 0.4%, respectively. The release of rifapentine from NPs could be maintained for more than 60 h. Most (68.0%) TC-PLGA-PEG NPs could bind to HAp powder in vitro. The cellular studies revealed that NPs were safe for intravenous administration. In vivo evaluations also revealed that the drug concentration of bone tissue in TC-PLGA-PEG group was significantly higher than that in other groups at all time (p < 0.05). Both NPs could improve pharmacokinetic parameters without evident organ toxicity. The minimal inhibitory concentration of NPs was 0.094 μg/mL, whereas this of free rifapentine was 0.25 μg/mL. Conclusion: Rifapentine loaded TC-PLGA-PEG NPs could increase the amount of rifapentine in bone tissue, prolong drug release in systemic circulation, enhance anti-tuberculosis activity, and thereby reducing dose and frequency of drug therapy for osteoarticular tuberculosis.
Collapse
Affiliation(s)
- Qiuzhen Liang
- Sports Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Pengfei Zhang
- Department of Gastroenterology, XD Group Hospital, Xi’an, Shaanxi, China
| | - Liang Zhang
- Sports Medicine Center, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Haopeng Luan
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinxia Li
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Haibin Xiang
- Department of Orthopaedics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Shuang Jing
- School of Pharmacy, Xinjiang Medical University, Urumqi, China
| | - Xinghua Song
- Department of Spine Surgery, The Sixth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
13
|
Serrasqueiro F, Barbosa AI, Lima SAC, Reis S. Targeting the Mannose Receptor with Functionalized Fucoidan/Chitosan Nanoparticles Triggers the Classical Activation of Macrophages. Int J Mol Sci 2023; 24:9908. [PMID: 37373056 DOI: 10.3390/ijms24129908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Understanding how nanoparticles' properties influence their cellular interactions is a bottleneck for improving the design of carriers. Macrophage polarization governs their active role in solving infections or tissue repair. To unravel the effect of carbohydrate-targeting mannose receptors on the macrophage surface, drug-free fucoidan/chitosan nanoparticles were functionalized using mannose (M) and mannan (Mn). Polyelectrolyte complex nanoparticles were obtained upon chitosan self-assembly using fucoidan. The functionalized nanoparticles were characterized in terms of their physicochemical characteristics, chemical profile, and carbohydrate orientation. The nanoparticles varied in size from 200 to 400 nm, were monodisperse, and had a stable negative zeta potential with a low aggregation tendency. The nonfunctionalized and functionalized nanoparticles retained their properties for up to 12 weeks. Cell viability and internalization studies were performed for all the designed nanoparticles in the THP-1 monocytes and THP-1-differentiated macrophages. The expression of the mannose receptor was verified in both immune cells. The carbohydrate-functionalized nanoparticles led to their activation and the production of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, and tumour necrosis factor (TNF)-α. Both M- and Mn-coated nanoparticles modulate macrophages toward an M1-polarized state. These findings demonstrate the tailoring of these nanoplatforms to interact and alter the macrophage phenotype in vitro and represent their therapeutic potential either alone or in combination with a loaded drug for future studies.
Collapse
Affiliation(s)
- Filipa Serrasqueiro
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Isabel Barbosa
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
14
|
Kia P, Ruman U, Pratiwi AR, Hussein MZ. Innovative Therapeutic Approaches Based on Nanotechnology for the Treatment and Management of Tuberculosis. Int J Nanomedicine 2023; 18:1159-1191. [PMID: 36919095 PMCID: PMC10008450 DOI: 10.2147/ijn.s364634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/06/2023] [Indexed: 03/11/2023] Open
Abstract
Tuberculosis (TB), derived from bacterium named Mycobacterium tuberculosis, has become one of the worst infectious and contagious illnesses in the world after HIV/AIDS. Long-term therapy, a high pill burden, lack of compliance, and strict management regimens are disadvantages which resulted in the extensively drug-resistant (XDR) along with multidrug-resistant (MDR) in the treatment of TB. One of the main thrust areas for the current scenario is the development of innovative intervention tools for early diagnosis and therapeutics towards Mycobacterium tuberculosis (MTB). This review discusses various nanotherapeutic agents that have been developed for MTB diagnostics, anti-TB drugs and vaccine. Undoubtedly, the concept of employing nanoparticles (NPs) has strong potential in this therapy and offers impressive outcomes to conquer the disease. Nanocarriers with different types were designed for drug delivery applications via various administration methods. Controlling and maintaining the drug release might be an example of the benefits of utilizing a drug-loaded NP in TB therapy over conventional drug therapy. Furthermore, the drug-encapsulated NP is able to lessen dosage regimen and can resolve the problems of insufficient compliance. Over the past decade, NPs were developed in both diagnostic and therapeutic methods, while on the other hand, the therapeutic system has increased. These "theranostic" NPs were designed for nuclear imaging, optical imaging, ultrasound, imaging with magnetic resonance and the computed tomography, which includes both single-photon computed tomography and positron emission tomography. More specifically, the current manuscript focuses on the status of therapeutic and diagnostic approaches in the treatment of TB.
Collapse
Affiliation(s)
- Pooneh Kia
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Umme Ruman
- Nanomaterials Synthesis and Characterization Laboratory (NSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | - Ariyati Retno Pratiwi
- Department of Oral Biology, Faculty of Dentistry, Universitas Brawijaya, Malang, Indonesia
| | - Mohd Zobir Hussein
- Nanomaterials Synthesis and Characterization Laboratory (NSCL), Institute of Nanoscience and Nanotechnology (ION2), Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
15
|
Suvarna V, Sawant N, Desai N. A Review on Recent Advances in Mannose-Functionalized Targeted Nanocarrier Delivery Systems in Cancer and Infective Therapeutics. Crit Rev Ther Drug Carrier Syst 2023; 40:43-82. [PMID: 36734913 DOI: 10.1615/critrevtherdrugcarriersyst.2022041853] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Unmodified nanocarriers used in the chemotherapy of cancers and various infectious diseases exhibit prolonged blood circulation time, prevent enzymatic degradation and increase chemical stability of encapsulated therapeutics. However, off-target effect and lack of specificity associated with unmodified nanoparticles (NPs) limit their applications in the health care system. Mannose (Man) receptors with significant overexpression on antigen-presenting cells and macrophages are among the most admired targets for cancer and anti-infective therapeutics. Therefore, development of Man functionalized nanocarriers targeting Man receptors, for target specific drug delivery in the chemotherapy have been extensively studied. Present review expounds diverse Man-conjugated NPs with their potential for targeted drug delivery, improved biodistribution profiles and localization. Additionally, the review gives detailed account of the interactions of mannosylated NPs with various biological systems and their characterization not discussed in earlier published reports is discussed.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Vile Parle (W), Mumbai 400056, Maharashtra, India
| | - Niserga Sawant
- C.U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai 400049, Maharashtra, India
| | - Namita Desai
- Department of Pharmaceutics, C. U. Shah College of Pharmacy, SNDT Women's University, Santacruz (W), Mumbai - 400049, Maharashtra, India
| |
Collapse
|
16
|
Nanosized Drug Delivery Systems to Fight Tuberculosis. Pharmaceutics 2023; 15:pharmaceutics15020393. [PMID: 36839715 PMCID: PMC9964171 DOI: 10.3390/pharmaceutics15020393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023] Open
Abstract
Tuberculosis (TB) is currently the second deadliest infectious disease. Existing antitubercular therapies are long, complex, and have severe side effects that result in low patient compliance. In this context, nanosized drug delivery systems (DDSs) have the potential to optimize the treatment's efficiency while reducing its toxicity. Hundreds of publications illustrate the growing interest in this field. In this review, the main challenges related to the use of drug nanocarriers to fight TB are overviewed. Relevant publications regarding DDSs for the treatment of TB are classified according to the encapsulated drugs, from first-line to second-line drugs. The physicochemical and biological properties of the investigated formulations are listed. DDSs could simultaneously (i) optimize the therapy's antibacterial effects; (ii) reduce the doses; (iii) reduce the posology; (iv) diminish the toxicity; and as a global result, (v) mitigate the emergence of resistant strains. Moreover, we highlight that host-directed therapy using nanoparticles (NPs) is a recent promising trend. Although the research on nanosized DDSs for TB treatment is expanding, clinical applications have yet to be developed. Most studies are only dedicated to the development of new formulations, without the in vivo proof of concept. In the near future, it is expected that NPs prepared by "green" scalable methods, with intrinsic antibacterial properties and capable of co-encapsulating synergistic drugs, may find applications to fight TB.
Collapse
|
17
|
Extraction and Characterization of Fiber and Cellulose from Ethiopian Linseed Straw: Determination of Retting Period and Optimization of Multi-Step Alkaline Peroxide Process. Polymers (Basel) 2023; 15:polym15020469. [PMID: 36679349 PMCID: PMC9912263 DOI: 10.3390/polym15020469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/20/2022] [Accepted: 11/25/2022] [Indexed: 01/18/2023] Open
Abstract
Flax is a commercial crop grown in many parts of the world both for its seeds and for its fibers. The seed-based flax variety (linseed) is considered less for its fiber after the seed is extracted. In this study, linseed straw was utilized and processed to extract fiber and cellulose through optimization of retting time and a multi-step alkaline peroxide extraction process using the Taguchi design of experiment (DOE). Effects of retting duration on fiber properties as well as effects of solvent concentration, reaction temperature, and time on removal of non-cellulosic fiber components were studied using the gravimetric technique, Fourier transform infrared (FTIR) spectroscopy and thermal studies. Based on these findings, retting for 216 h at room temperature should offer adequate retting efficiency and fiber characteristics; 70% cellulose yield was extracted successfully from linseed straw fiber using 75% ethanol-toluene at 98 °C for 4 h, 6% NaOH at 75 °C for 30 min, and 6% H2O2 at 90 °C for 120 min.
Collapse
|
18
|
Chen M, Shou Z, Jin X, Chen Y. Emerging strategies in nanotechnology to treat respiratory tract infections: realizing current trends for future clinical perspectives. Drug Deliv 2022; 29:2442-2458. [PMID: 35892224 PMCID: PMC9341380 DOI: 10.1080/10717544.2022.2089294] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A boom in respiratory tract infection cases has inflicted a socio-economic burden on the healthcare system worldwide, especially in developing countries. Limited alternative therapeutic options have posed a major threat to human health. Nanotechnology has brought an immense breakthrough in the pharmaceutical industry in a jiffy. The vast applications of nanotechnology ranging from early diagnosis to treatment strategies are employed for respiratory tract infections. The research avenues explored a multitude of nanosystems for effective drug delivery to the target site and combating the issues laid through multidrug resistance and protective niches of the bacteria. In this review a brief introduction to respiratory diseases and multifaceted barriers imposed by bacterial infections are enlightened. The manuscript reviewed different nanosystems, i.e. liposomes, solid lipid nanoparticles, polymeric nanoparticles, dendrimers, nanogels, and metallic (gold and silver) which enhanced bactericidal effects, prevented biofilm formation, improved mucus penetration, and site-specific delivery. Moreover, most of the nanotechnology-based recent research is in a preclinical and clinical experimental stage and safety assessment is still challenging.
Collapse
Affiliation(s)
- Minhua Chen
- Emergency & Intensive Care Unit Center, Department of Intensive Care Unit, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| | - Zhangxuan Shou
- Department of Pharmacy, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Xue Jin
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Yingjun Chen
- Department of Infectious Diseases, People's Hospital of Tiantai County, Taizhou, China
| |
Collapse
|
19
|
Kiani MH, ul Hassan MR, Hussain S, Kiani ZH, Ibrahim IM, Shahnaz G, Rahdar A, Díez-Pascual AM. Cholesterol decorated thiolated stereocomplexed nanomicelles for improved anti-mycobacterial potential via efflux pump and mycothione reductase inhibition. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
20
|
Shin S, Kwon S, Yeo Y. Meta-Analysis of Drug Delivery Approaches for Treating Intracellular Infections. Pharm Res 2022; 39:1085-1114. [PMID: 35146592 PMCID: PMC8830998 DOI: 10.1007/s11095-022-03188-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/01/2022] [Indexed: 12/20/2022]
Abstract
This meta-analysis aims to evaluate the trend, methodological quality and completeness of studies on intracellular delivery of antimicrobial agents. PubMed, Embase, and reference lists of related reviews were searched to identify original articles that evaluated carrier-mediated intracellular delivery and pharmacodynamics (PD) of antimicrobial therapeutics against intracellular pathogens in vitro and/or in vivo. A total of 99 studies were included in the analysis. The most commonly targeted intracellular pathogens were bacteria (62.6%), followed by viruses (16.2%) and parasites (15.2%). Twenty-one out of 99 (21.2%) studies performed neither microscopic imaging nor flow cytometric analysis to verify that the carrier particles are present in the infected cells. Only 31.3% of studies provided comparative inhibitory concentrations against a free drug control. Approximately 8% of studies, albeit claimed for intracellular delivery of antimicrobial therapeutics, did not provide any experimental data such as microscopic imaging, flow cytometry, and in vitro PD. Future research on intracellular delivery of antimicrobial agents needs to improve the methodological quality and completeness of supporting data in order to facilitate clinical translation of intracellular delivery platforms for antimicrobial therapeutics.
Collapse
Affiliation(s)
- Sooyoung Shin
- College of Pharmacy, Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea. .,Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, Gyeonggi-do, 16499, Republic of Korea.
| | - Soonbum Kwon
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, 575 Stadium Mall Dr., West Lafayette, IN, 47906, USA. .,Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Dr., West Lafayette, IN, 47907, USA.
| |
Collapse
|
21
|
A ROS-responsive fluorescent probe detecting experimental colitis by functional polymeric nanoparticles. Int J Pharm 2021; 609:121125. [PMID: 34560209 DOI: 10.1016/j.ijpharm.2021.121125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 12/19/2022]
Abstract
Current evidence shows that oxidative stress plays an essential role in the pathogenesis and progression of inflammatory bowel disease (IBD). TotalROX (λabs/λem = 425/525 nm) is a ratiometric probe with high detection sensitivity and a superior capacity to monitor total cellular oxidative capacity. Herein, we investigated the potential of combining totalROX with an oral nanoparticle delivery system to detect the degree of colitis. This detection system also featured pH-responsive Eudragit S100, hyaluronic acid with high affinity to the CD44 receptor, and chitosan, and demonstrated improved loading efficiency and stability. An experimental mouse model of experimental colitis was induced by dextran sodium sulfate do that we could investigate the ability of our nanoparticles to target the colon and determine the degree of inflammation. We also determined and validated the positive correlation between the fluorescence intensity of the detection product (Ox670, λabs/λem = 650/675 nm) and myeloperoxidase activity (R2 = 0.97) and the histopathological score (R2 = 0.98). TotalROX had significant ability to measure reactive oxygen species (ROS) produced by cells under inflammatory conditions, as confirmed by in vitro experiments with Caco-2 cells. Collectively, the data generated demonstrate that when loaded with totalROX, these functional nanoparticles are promising tools for cellular imaging after oral administration. This is the first description of a ROS-responsive fluorescent probe to evaluate the degree of colitis in experimental animal models and provides a promising approach for the diagnosis of inflammation in IBD with fluorescence-guided colonoscopy.
Collapse
|
22
|
Drug delivery for fighting infectious diseases: a global perspective. Drug Deliv Transl Res 2021; 11:1316-1322. [PMID: 34109534 PMCID: PMC8189707 DOI: 10.1007/s13346-021-01009-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2021] [Indexed: 12/16/2022]
|