1
|
Yan J, Siwakoti P, Shaw S, Bose S, Kokil G, Kumeria T. Porous silicon and silica carriers for delivery of peptide therapeutics. Drug Deliv Transl Res 2024; 14:3549-3567. [PMID: 38819767 PMCID: PMC11499345 DOI: 10.1007/s13346-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Peptides have gained tremendous popularity as biological therapeutic agents in recent years due to their favourable specificity, diversity of targets, well-established screening methods, ease of production, and lower cost. However, their poor physiological and storage stability, pharmacokinetics, and fast clearance have limited their clinical translation. Novel nanocarrier-based strategies have shown promise in overcoming these issues. In this direction, porous silicon (pSi) and mesoporous silica nanoparticles (MSNs) have been widely explored as potential carriers for the delivery of peptide therapeutics. These materials possess several advantages, including large surface areas, tunable pore sizes, and adjustable pore architectures, which make them attractive carriers for peptide delivery systems. In this review, we cover pSi and MSNs as drug carriers focusing on their use in peptide delivery. The review provides a brief overview of their fabrication, surface modification, and interesting properties that make them ideal peptide drug carriers. The review provides a systematic account of various studies that have utilised these unique porous carriers for peptide delivery describing significant in vitro and in vivo results. We have also provided a critical comparison of the two carriers in terms of their physicochemical properties and short-term and long-term biocompatibility. Lastly, we have concluded the review with our opinion of this field and identified key areas for future research for clinical translation of pSi and MSN-based peptide therapeutic formulations.
Collapse
Affiliation(s)
- Jiachen Yan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Prakriti Siwakoti
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Siuli Shaw
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Sudeep Bose
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, 201301, India
- Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, 201301, India
| | - Ganesh Kokil
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
| | - Tushar Kumeria
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia.
- Australian Centre for Nanomedicine, The University of New South Wales, Sydney, NSW, 2052, Australia.
- School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
2
|
Pisani S, Tufail S, Rosalia M, Dorati R, Genta I, Chiesa E, Conti B. Antibiotic-Loaded Nano-Sized Delivery Systems: An Insight into Gentamicin and Vancomycin. J Funct Biomater 2024; 15:194. [PMID: 39057315 PMCID: PMC11277905 DOI: 10.3390/jfb15070194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/02/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
The fight against infectious disease has remained an ever-evolving challenge in the landscape of healthcare. The ability of pathogens to develop resistance against conventional drug treatments has decreased the effectiveness of therapeutic interventions, and antibiotic resistance is recognized as one of the main challenges of our time. The goal of this systematic review paper is to provide insight into the research papers published on innovative nanosized drug delivery systems (DDSs) based on gentamycin and vancomycin and to discuss the opportunity of their repurposing through nano DDS formulations. These two antibiotics are selected because (i) gentamicin is the first-line drug used to treat suspected or confirmed infections caused by Gram-negative bacterial infections and (ii) vancomycin is used to treat serious Gram-positive bacterial infections. Moreover, both antibiotics have severe adverse effects, and one of the purposes of their formulation as nanosized DDSs is to overcome them. The review paper includes an introduction focusing on the challenges of infectious diseases and traditional therapeutic treatments, a brief description of the chemical and pharmacological properties of gentamicin and vancomycin, case studies from the literature on innovative nanosized DDSs as carriers of the two antibiotic drugs, and a discussion of the results found in the literature.
Collapse
Affiliation(s)
- Silvia Pisani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Shafia Tufail
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
- Department of Drug Sciences, IUSS Scuola Universitaria Superiore Pavia, 27100 Pavia, Italy
| | - Mariella Rosalia
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (S.P.); (S.T.); (M.R.); (R.D.); (I.G.); (E.C.)
| |
Collapse
|
3
|
Aparicio-Blanco J, Vishwakarma N, Lehr CM, Prestidge CA, Thomas N, Roberts RJ, Thorn CR, Melero A. Antibiotic resistance and tolerance: What can drug delivery do against this global threat? Drug Deliv Transl Res 2024; 14:1725-1734. [PMID: 38341386 PMCID: PMC11052818 DOI: 10.1007/s13346-023-01513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2023] [Indexed: 02/12/2024]
Abstract
Antimicrobial resistance and tolerance (AMR&T) are urgent global health concerns, with alarmingly increasing numbers of antimicrobial drugs failing and a corresponding rise in related deaths. Several reasons for this situation can be cited, such as the misuse of traditional antibiotics, the massive use of sanitizing measures, and the overuse of antibiotics in agriculture, fisheries, and cattle. AMR&T management requires a multifaceted approach involving various strategies at different levels, such as increasing the patient's awareness of the situation and measures to reduce new resistances, reduction of current misuse or abuse, and improvement of selectivity of treatments. Also, the identification of new antibiotics, including small molecules and more complex approaches, is a key factor. Among these, novel DNA- or RNA-based approaches, the use of phages, or CRISPR technologies are some potent strategies under development. In this perspective article, emerging and experienced leaders in drug delivery discuss the most important biological barriers for drugs to reach infectious bacteria (bacterial bioavailability). They explore how overcoming these barriers is crucial for producing the desired effects and discuss the ways in which drug delivery systems can facilitate this process.
Collapse
Affiliation(s)
- Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040, Madrid, Spain
| | - Nikhar Vishwakarma
- Department of Pharmacy, Gyan Ganga Institute of Technology and Sciences, Jabalpur, 482003, Madhya Pradesh, India
| | - Claus-Michael Lehr
- Department Drug Delivery across Biological Barriers (DDEL), Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Campus Building E8 1, 66123, Saarbrücken, Germany
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | | | - Chelsea R Thorn
- Biotherapeutics Pharmaceutical Research and Development, Pfizer, Inc., 1 Burtt Road, Andover, MA, 01810, USA.
| | - Ana Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
4
|
Andima M, Boese A, Paul P, Koch M, Loretz B, Lehr CM. Targeting Intracellular Bacteria with Dual Drug-loaded Lactoferrin Nanoparticles. ACS Infect Dis 2024; 10:1696-1710. [PMID: 38577780 PMCID: PMC11091908 DOI: 10.1021/acsinfecdis.4c00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Treatment of microbial infections is becoming daunting because of widespread antimicrobial resistance. The treatment challenge is further exacerbated by the fact that certain infectious bacteria invade and localize within host cells, protecting the bacteria from antimicrobial treatments and the host's immune response. To survive in the intracellular niche, such bacteria deploy surface receptors similar to host cell receptors to sequester iron, an essential nutrient for their virulence, from host iron-binding proteins, in particular lactoferrin and transferrin. In this context, we aimed to target lactoferrin receptors expressed by macrophages and bacteria; as such, we prepared and characterized lactoferrin nanoparticles (Lf-NPs) loaded with a dual drug combination of antimicrobial natural alkaloids, berberine or sanguinarine, with vancomycin or imipenem. We observed increased uptake of drug-loaded Lf-NPs by differentiated THP-1 cells with up to 90% proportion of fluorescent cells, which decreased to about 60% in the presence of free lactoferrin, demonstrating the targeting ability of Lf-NPs. The encapsulated antibiotic drug cocktail efficiently cleared intracellular Staphylococcus aureus (Newman strain) compared to the free drug combinations. However, the encapsulated drugs and the free drugs alike exhibited a bacteriostatic effect against the hard-to-treat Mycobacterium abscessus (smooth variant). In conclusion, the results of this study demonstrate the potential of lactoferrin nanoparticles for the targeted delivery of antibiotic drug cocktails for the treatment of intracellular bacteria.
Collapse
Affiliation(s)
- Moses Andima
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Chemistry, Faculty of Science and Education, Busitema University, P.O Box 236, Tororo 21435, Uganda
| | - Annette Boese
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Pascal Paul
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Marcus Koch
- INM-Leibniz
Institute for New Materials, Campus D2 2, Saarbrücken 66123, Germany
| | - Brigitta Loretz
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
| | - Claus-Micheal Lehr
- Department
of Drug Delivery (DDEL), Helmholtz Institute
for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for
Infection Research, Campus E8.1, Saarbrücken 66123, Germany
- Department
of Pharmacy, Saarland University, Saarbrücken 66123, Germany
| |
Collapse
|
5
|
Flynn J, Culebras M, Collins MN, Hudson SP. The impact of varying dextran oxidation levels on the inhibitory activity of a bacteriocin loaded injectable hydrogel. Drug Deliv Transl Res 2023; 13:308-319. [PMID: 35851672 PMCID: PMC9726672 DOI: 10.1007/s13346-022-01201-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2022] [Indexed: 12/14/2022]
Abstract
In the design of injectable antimicrobial dextran-alginate hydrogels, the impact of dextran oxidation and its subsequent changes in molecular weight and the incorporation of glycol chitosan on (i) gel mechanical strength and (ii) the inhibitory profile of an encapsulated bacteriocin, nisin A, are explored. As the degree of oxidation increases, the weight average molecular mass of the dextran decreases, resulting in a reduction in elastic modulus of the gels made. Upon encapsulation of the bacteriocin nisin into the gels, varying the dextran mass/oxidation level allowed the antimicrobial activity against S. aureus to be controlled. Gels made with a higher molecular weight (less oxidised) dextran show a higher initial degree of inhibition while those made with a lower molecular weight (more oxidised) dextran exhibit a more sustained inhibition. Incorporating glycol chitosan into gels composed of dextran with higher masses significantly increased their storage modulus and the gels' initial degree of inhibition.
Collapse
Affiliation(s)
- James Flynn
- Department of Chemical Sciences, Bernal Institute, SSPC – The SFI Pharmaceutical Research Centre, University of Limerick, Limerick, Ireland
| | - Mario Culebras
- School of Engineering, Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Maurice N. Collins
- School of Engineering, Stokes Laboratories, Bernal Institute, University of Limerick, Limerick, Ireland ,Health Research Institute and AMBER, University of Limerick, Limerick, Ireland
| | - Sarah P. Hudson
- Department of Chemical Sciences, Bernal Institute, SSPC – The SFI Pharmaceutical Research Centre, University of Limerick, Limerick, Ireland
| |
Collapse
|
6
|
Marine Cyclic Peptides: Antimicrobial Activity and Synthetic Strategies. Mar Drugs 2022; 20:md20060397. [PMID: 35736200 PMCID: PMC9230156 DOI: 10.3390/md20060397] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/06/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Oceans are a rich source of structurally unique bioactive compounds from the perspective of potential therapeutic agents. Marine peptides are a particularly interesting group of secondary metabolites because of their chemistry and wide range of biological activities. Among them, cyclic peptides exhibit a broad spectrum of antimicrobial activities, including against bacteria, protozoa, fungi, and viruses. Moreover, there are several examples of marine cyclic peptides revealing interesting antimicrobial activities against numerous drug-resistant bacteria and fungi, making these compounds a very promising resource in the search for novel antimicrobial agents to revert multidrug-resistance. This review summarizes 174 marine cyclic peptides with antibacterial, antifungal, antiparasitic, or antiviral properties. These natural products were categorized according to their sources—sponges, mollusks, crustaceans, crabs, marine bacteria, and fungi—and chemical structure—cyclic peptides and depsipeptides. The antimicrobial activities, including against drug-resistant microorganisms, unusual structural characteristics, and hits more advanced in (pre)clinical studies, are highlighted. Nocathiacins I–III (91–93), unnarmicins A (114) and C (115), sclerotides A (160) and B (161), and plitidepsin (174) can be highlighted considering not only their high antimicrobial potency in vitro, but also for their promising in vivo results. Marine cyclic peptides are also interesting models for molecular modifications and/or total synthesis to obtain more potent compounds, with improved properties and in higher quantity. Solid-phase Fmoc- and Boc-protection chemistry is the major synthetic strategy to obtain marine cyclic peptides with antimicrobial properties, and key examples are presented guiding microbiologist and medicinal chemists to the discovery of new antimicrobial drug candidates from marine sources.
Collapse
|
7
|
Bagre A, Patel PR, Naqvi S, Jain K. Emerging concerns of infectious diseases and drug delivery challenges. NANOTHERANOSTICS FOR TREATMENT AND DIAGNOSIS OF INFECTIOUS DISEASES 2022. [PMCID: PMC9212246 DOI: 10.1016/b978-0-323-91201-3.00013-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Emerging infectious diseases are the infections that could be newly appeared or have existed demographic area with rapidly increasing in some geographic range. Among various types of emerging infectious diseases like Ebola, chikungunya, tuberculosis, SARS, MERS, avian flu, swine flu, Zika, and so on, very recently we have witnessed the emergence of recently recognized coronavirus infection as Covid-19 pandemic caused by SARS-CoV-2, which rapidly spread around the world. Various emerging factors precipitating disease emergence include environmental, demographic, or ecological that increase the contact of people with unfamiliar microbial agents or their host or promote dissemination. Here in this chapter, we reviewed the various emerging considerations of infectious diseases including factors responsible for emerging and re-emerging infectious diseases as well as drug delivery challenges to treat infectious diseases and various strategies to deal with these challenges including nanotheranostics. Nanotheranostics are showing potential toward real-time understanding, diagnosis, and monitoring the response of the chemotherapy during treatment with reduced nontarget toxicity and enhanced safety level in the recent research studies.
Collapse
|