1
|
Tu Y, Fan X, Wang X, Qi J, Chai Y, He L. Investigation into the molecular mechanisms of biomarkers in psoriasis vulgaris with reduced high-density lipoprotein levels based on bulk transcriptome sequencing data. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167638. [PMID: 39732346 DOI: 10.1016/j.bbadis.2024.167638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/01/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
It has been found that severe lipid metabolism disorders are often present in patients with Psoriasis, including decreased levels of high-density lipoprotein (HDL). This study initially explored the impact of HDL level variations on psoriasis by collecting. This study collected 12 blood samples and 9 skin samples from psoriasis vulgaris and psoriasis vulgaris with reduced HDL levels and performed bulk RNA sequencing. The genes expressed explicitly in both tissue and blood samples from psoriasis vulgaris patients with low HDL levels were selected to explore their molecular regulation in psoriasis vulgaris further, to elucidate the pathogenesis of psoriasis. A total of 421 specific DEGs in blood and 143 specific DEGs in skin from PN groups were obtained, and these genes were enriched in the terms and pathways related to inflammation and immune system. Also, biomarkers were screened out with same expression pattern in both blood and skin samples. Five intersecting differential genes (METRNL, NDEL1, HLA-DRA, MZB1, MKRN3) were obtained. Their function was further predicted. In conclusion, our research identified five biomarkers in psoriasis that are associated with low HDL levels. Furthermore, our findings revealed that alterations in HDL levels in psoriasis may exacerbate the clinical manifestations of psoriasis through regulation of immune response and lipid metabolism.
Collapse
Affiliation(s)
- Ying Tu
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, China
| | - Xiaoqing Fan
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, China
| | - Xiaoli Wang
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, China
| | - Jue Qi
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, China
| | - Yanjie Chai
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, China
| | - Li He
- Department of Dermatology, The First Affiliated Hospital of Kunming Medical University, China.
| |
Collapse
|
2
|
Zhu Y, Zhou Y, Ma X, Duan Z, Xu H, Li Y, Kong Y, Yang L, Xin X. Topical Therapy in Psoriasis: Clinical Benefits, Advances in Novel Drug Delivery Strategies, and Gene Therapy Regimen. Pharmaceutics 2025; 17:283. [PMID: 40142947 PMCID: PMC11945059 DOI: 10.3390/pharmaceutics17030283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/08/2025] [Accepted: 02/18/2025] [Indexed: 03/28/2025] Open
Abstract
Psoriasis is a chronic inflammatory disease with a complex pathogenesis, influenced by various factors involving environment, genes, and immunity. The main symptoms of psoriasis include erythema, scales, itching, etc. At present, therapeutic drugs for psoriasis are continually evolving towards enhancing treatment efficacy and reducing side effects. Firstly, the pathogenesis and characteristics of psoriasis were summarized. Then, the types and benefits of topical therapy were introduced, such as the aspects of avoiding systemic toxic effects, first pass effect, and gastrointestinal reactions with accelerating the onset time of the drugs and improving its efficacy, and were compared to systemic drugs. In the case of methotrexate, cyclosporin A, Janus kinase (JAK) inhibitors, and phosphodiesterase-4 (PDE-4) inhibitors, this review had a further discussion on the improvement and translation of these molecules from systemic therapy to topical therapy in clinical practice. To further augment the limitation of skin permeability, nanotechnology and novel topical drug delivery system including nanomedicines, hydrogels, ionic liquids, and microneedles were elaborated for psoriasis management. Also, exploration of topical targeting pathogenic genes through small interfering RNA (siRNA) using nanoparticles and ionic liquids (ILs) is of great significance for long-term treatment in psoriasis. Taken together, the development of numerous topical delivery platforms is expected to achieve enhanced penetration, and precise and efficient delivery of small molecule and RNA interference (RNAi) therapeutics in psoriasis with clinical translation prospects.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Z.D.); (H.X.); (Y.L.)
| | - Yong Zhou
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China;
| | - Xiaonan Ma
- The Public Laboratory Platform of China Pharmaceutical University, Nanjing 210009, China;
| | - Zhenduo Duan
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Z.D.); (H.X.); (Y.L.)
| | - Hong Xu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Z.D.); (H.X.); (Y.L.)
| | - Yuanyuan Li
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Z.D.); (H.X.); (Y.L.)
| | - Yunfan Kong
- The F.M. Kirby Neurobiology Center, Boston Children’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Lei Yang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Z.D.); (H.X.); (Y.L.)
| | - Xiaofei Xin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; (Y.Z.); (Z.D.); (H.X.); (Y.L.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Thakur RK, Kumar A, Aggarwal K, Sood N, Khare S, Patel P, Das Kurmi B. A complete sojourn on nanotechnological advancements and nanocarrier applications in psoriasis management. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03804-w. [PMID: 39847054 DOI: 10.1007/s00210-025-03804-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
Psoriasis, a chronic autoimmune and non-communicable skin disease, affects 2-3% of the global population, creating a significant financial burden on healthcare systems worldwide. Treatment approaches are categorized based on disease severity, with first-line therapy focusing on topical treatments and second-line therapy encompassing phototherapy, systemic therapy, and biological therapy. Transdermal drug delivery methods present a promising alternative by enhancing drug absorption through the skin, potentially improving therapeutic outcomes while minimizing systemic adverse effects. Among these, microneedles (MNs) emerge as an innovative transdermal delivery device offering controlled and sustained drug release, reduced systemic exposure, and painless, minimally invasive targeted drug delivery, making them highly suitable for managing skin-related immune disorders. Other transdermal techniques, such as sonophoresis, patches, iontophoresis, and electroporation, also play critical roles in psoriasis treatment. Nanotechnological approaches offer transformative solutions to overcome the limitations of traditional formulations by enhancing efficacy, reducing dosing frequency, and minimizing dose-dependent side effects. Various nanocarriers, including liposomes, ethosomes, transferosomes, niosomes, solid lipid nanoparticles (SLNs), liquid crystalline nanoparticles (LCNPs), nanoemulsions (NEs), and micelles, demonstrate significant potential to improve drug penetration, targeted distribution, safety, and efficacy. This review aims to comprehensively analyze the advancements in nanotechnological approaches and nanocarrier applications for psoriasis management. It discusses the types, pathophysiology, and history of psoriasis while exploring current treatment strategies, including herbal formulations and nanotechnology-based interventions. The review also evaluates the potential of nanotechnological advancements as innovative therapeutic options, emphasizing their mechanisms, benefits, and clinical applicability in addressing the shortcomings of conventional therapies. Together, these insights highlight nano-formulations as a promising frontier for effective psoriasis management.
Collapse
Affiliation(s)
- Ritik Kumar Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Aman Kumar
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Kaushal Aggarwal
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Nayan Sood
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
| | - Satyam Khare
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India
| | - Preeti Patel
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India
| | - Balak Das Kurmi
- Department of Pharmaceutics, ISF College of Pharmacy, GT Road, Moga, 142001, Punjab, India.
- I.K. Gujral Punjab Technical University, Jalandhar - Kapurthala Highway, Kapurthala, 144603, Punjab, India.
| |
Collapse
|
4
|
Gao Y, Xu T, Wang Y, Hu Y, Yin S, Qin Z, Yu H. Pathophysiology and Treatment of Psoriasis: From Clinical Practice to Basic Research. Pharmaceutics 2025; 17:56. [PMID: 39861704 PMCID: PMC11769081 DOI: 10.3390/pharmaceutics17010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
Psoriasis, a chronic inflammatory dermatosis, represents a significant clinical challenge due to its complex pathogenesis and the limitations of existing therapeutic strategies. Current psoriasis diagnoses are primarily clinician-dependent, with instrumental diagnostics serving as adjuncts. Ongoing research is progressively deciphering its molecular underpinnings; the future of psoriasis diagnostics may involve genetic and immunological profiling to pinpoint biomarkers, enabling more accurate and timely interventions. The administration of psoriasis medications, whether oral, injectable, or topical, is associated with a range of side effects and compliance issues. Topical medications, despite their advantages in patient compliance and reduced systemic side effects, are hindered by the altered skin barrier in psoriasis, which impedes effective drug penetration and retention. In recent years, the development of novel transdermal drug delivery systems represents a promising frontier in psoriasis management. Nanotechnology-, microneedle- and dressing-based systems have demonstrated the potential for improved skin penetration, enhanced bioavailability, or extended retention time. Here, we will focus on the latest insights into the etiology, diagnostic methodologies, and therapeutic approaches for psoriasis, with a particular emphasis on the evolution and challenges of novel transdermal drug delivery systems.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| | - Tianqi Xu
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Yu Wang
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Yanjinhui Hu
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Shaoping Yin
- School of Pharmacy, Jiangsu Provincial Engineering Research Center of Traditional Chinese Medicine External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing 210023, China; (Y.W.); (Y.H.); (S.Y.)
| | - Zhiguo Qin
- Department of Pharmacy, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, China;
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China;
| |
Collapse
|
5
|
Datta D, Bandi SP, Venuganti VVK. Ionic Liquid-Mediated Transdermal Delivery of Organogel Containing Cyclosporine A for the Effective Treatment of Psoriasis. ACS OMEGA 2024; 9:41565-41582. [PMID: 39398161 PMCID: PMC11465456 DOI: 10.1021/acsomega.4c05346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 10/15/2024]
Abstract
The dermal delivery of peptide therapeutics that are of high molecular weight is a challenge. Cyclosporine A (CsA) is a cyclic undecapeptide with poor aqueous solubility and high molecular weight (1202 Da) indicated for psoriasis. The objective of the study was to evaluate the effect of ionic liquids mixed with the Pluronic F127 matrix in skin permeation of CsA and its efficacy in psoriasis treatment. Choline and geranic acid (CAGE) ionic liquids in a 1:2 molar ratio were mixed with Pluronic F127 (22.7%) and PEG 400 (45%) to prepare an organogel formulation. The CsA-loaded CAGE (CsA-CAGE) and CAGE-Pluronic F127 gels (CsA-CAGE-P gel) were characterized for physical and rheological characteristics. The skin transport studies showed that free CsA did not permeate across the excised porcine skin after 48 h. The amount of CsA permeated across the oleic acid (0.25% v/v) and palmitic acid (0.25% w/v) cotreated skin was found to be 244 ± 4 and 1236 ± 17 μg/cm2, respectively. The application of CsA-CAGE and CsA-CAGE-P gel enhanced CsA flux by 110- and 135-fold, respectively, compared with the control. The thermal analysis and biophysical studies changed the barrier property of the skin significantly (p < 0.05) after incubation with CAGE and CAGE-P gel. The pharmacokinetic studies in the rat model showed that topical application of CsA-CAGE-P gel provided 2.6- and 1.9-fold greater C max and AUC0-t, respectively, compared to the control group. In vitro-in vivo level A correlations were established with R 2 values of 0.991 and 0.992 for both linear and polynomial equations for the CsA-CAGE-P gel formulation using the Wagner-Nelson method. The topical application of CsA-CAGE-P gel (10 mg/kg) on an imiquimod-induced plaque psoriatic model reduced the area of the psoriasis and severity index (PASI) score significantly for erythema and scaling, reversing the changes to skin thickness, blood flow rate, and transepidermal water loss. Together, CAGE-Pluronic F127 organogel was developed as an effective topical formulation for the local and systemic delivery of CsA for the treatment of psoriasis.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana State 500078, India
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Sony Priyanka Bandi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana State 500078, India
- Loka Laboratories Private Limited, Technology Business Incubator, BITS Pilani Hyderabad Campus, Jawahar Nagar, Medchal, Telangana 500078, India
| | - Venkata Vamsi Krishna Venuganti
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana State 500078, India
| |
Collapse
|
6
|
Xu P, Xiao W, Xu K, He Y, Miao X, Dong Y, Sun L. Potential strategy of microneedle-based transdermal drug delivery system for effective management of skin-related immune disorders. Eur J Pharm Biopharm 2024; 195:114148. [PMID: 37995878 DOI: 10.1016/j.ejpb.2023.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/03/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Skin-related immune disorders are a category of diseases that lead to the dysregulation of the body's immune response due to imbalanced immune regulation. These disorders exhibit diverse clinical manifestations and complicated pathogenesis. The long-term use of corticosteroids, anti-inflammatory drugs, and immunosuppressants as traditional treatment methods for skin-related immune disorders frequently leads to adverse reactions in patients. In addition, the effect of external preparations is not ideal in some cases due to the compacted barrier function of the stratum corneum (SC). Microneedles (MNs) are novel transdermal drug delivery systems that have theapparent advantages ofpenetrating the skin barrier, such as long-term and controlled drug delivery, less systemic exposure, and painless and minimally invasive targeted delivery. These advantages make it a good candidate formulation for the treatment of skin-related immune disorders and a hotspot for research in this field. This paper updates the classification, preparation, evaluation strategies, materials, and related applications of five types of MNs. Specific information, including the mechanical properties, dimensions, stability, and in vitro and in vivo evaluations of MNs in the treatment of skin-related immune disorders, is also discussed. This review provides an overview of the advances and applications of MNs in the effective treatment of skin-related immune disorders and their emerging trends.
Collapse
Affiliation(s)
- Peng Xu
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Wei Xiao
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Kun Xu
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Yuan He
- Department of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiaoqing Miao
- Marine College, Shandong University, Weihai 264209, China
| | - Yan Dong
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China
| | - Lin Sun
- Department of Zhuhai Campus of Zunyi Medical University, Zhuhai 519041, China.
| |
Collapse
|
7
|
Chen H, Su Z, Pan X, Zheng X, Li H, Ye Z, Tang B, Lu Y, Zheng G, Lu C. Phytochemicals: Targeting autophagy to treat psoriasis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 120:155041. [PMID: 37678054 DOI: 10.1016/j.phymed.2023.155041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 07/18/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory skin disease characterized by well-defined erythema and white scales, which affects approximately 2% of the worldwide population and causes long-term distress to patients. Therefore, development of safe and effective therapeutic drugs is imminent. Autophagy, an evolutionarily conserved catabolic process, degrades intracellular constituents to maintain cellular energy homeostasis. Numerous studies have revealed that autophagy is closely related to immune function, such as removal of intracellular bacteria, inflammatory cytokine secretion, antigen presentation, and lymphocyte development. Phytochemicals derived from natural plants are often used to treat psoriasis due to their unique therapeutic properties and favorable safety. So far, a mass of phytochemicals have been proven to be able to activate autophagy and thus alleviate psoriasis. This review aimed to provide directions for finding phytochemicals that target autophagy to treat psoriasis. METHODS The relevant literatures were collected from classical TCM books and a variety of databases (PubMed, Google Scholar, ScienceDirect, Springer Link, Web of Science and China National Knowledge Infrastructure) till December 2022. Search terms were "Phytochemical", "Psoriasis" and "Autophagy". The retrieved data followed PRISMA criteria (preferred reporting items for systematic review). RESULTS Phytochemicals treat psoriasis mainly through regulating immune cell function, inhibiting excessive inflammatory response, and reducing oxidative stress. While the role and mechanism of autophagy in the pathogenesis of psoriasis have been confirmed in human trials, most of the evidence for phytochemicals that target autophagy to treat psoriasis comes from animal studies. The research focusing on the role of phytochemical-mediated autophagy in the prevention and treatment of psoriasis is limited, and the definite relationship between phytochemical-regulated autophagy and treatment of psoriasis still deserves further experimental confirmation. CONCLUSIONS Phytochemicals with autophagic activities will provide new insights into the therapeutic intervention for psoriasis.
Collapse
Affiliation(s)
- Haiming Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zuqing Su
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xin Pan
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xuwei Zheng
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hongxia Li
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zeting Ye
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bin Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Chuanjian Lu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
8
|
Liu Y, Chen S, Liu S, Wallace KL, Zille M, Zhang J, Wang J, Jiang C. T-cell receptor signaling modulated by the co-receptors: Potential targets for stroke treatment. Pharmacol Res 2023; 192:106797. [PMID: 37211238 DOI: 10.1016/j.phrs.2023.106797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/02/2023] [Accepted: 05/16/2023] [Indexed: 05/23/2023]
Abstract
Stroke is a severe and life-threatening disease, necessitating more research on new treatment strategies. Infiltrated T lymphocytes, an essential adaptive immune cell with extensive effector function, are crucially involved in post-stroke inflammation. Immediately after the initiation of the innate immune response triggered by microglia/macrophages, the adaptive immune response associated with T lymphocytes also participates in the complex pathophysiology of stroke and partially informs the outcome of stroke. Preclinical and clinical studies have revealed the conflicting roles of T cells in post-stroke inflammation and as potential therapeutic targets. Therefore, exploring the mechanisms that underlie the adaptive immune response associated with T lymphocytes in stroke is essential. The T-cell receptor (TCR) and its downstream signaling regulate T lymphocyte differentiation and activation. This review comprehensively summarizes the various molecules that regulate TCR signaling and the T-cell response. It covers both the co-stimulatory and co-inhibitory molecules and their roles in stroke. Because immunoregulatory therapies targeting TCR and its mediators have achieved great success in some proliferative diseases, this article also summarizes the advances in therapeutic strategies related to TCR signaling in lymphocytes after stroke, which can facilitate translation. DATA AVAILABILITY: No data was used for the research described in the article.
Collapse
Affiliation(s)
- Yuanyuan Liu
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Shuai Chen
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China
| | - Simon Liu
- Medical Genomics Unit, National Human Genome Research Institute, Bethesda, MD, 20814, USA
| | - Kevin L Wallace
- College of Mathematical and Natural Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Marietta Zille
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, A-1090 Vienna, Austria
| | - Jiewen Zhang
- Department of Neurology, People's Hospital of Zhengzhou University, 450000, Zhengzhou, P. R. China.
| | - Jian Wang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China; Department of Anatomy, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, P. R. China.
| | - Chao Jiang
- Department of Neurology, The Fifth Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, P. R. China.
| |
Collapse
|
9
|
Lee J, Kim J, Kang J, Lee HJ. COVID-19 drugs: potential interaction with ATP-binding cassette transporters P-glycoprotein and breast cancer resistance protein. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:1-22. [PMID: 36320434 PMCID: PMC9607806 DOI: 10.1007/s40005-022-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/30/2022] [Indexed: 01/08/2023]
Abstract
Background The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2, has resulted in acute respiratory distress, fatal systemic manifestations (extrapulmonary as well as pulmonary), and premature mortality among many patients. Therapy for COVID-19 has focused on the treatment of symptoms and of acute inflammation (cytokine storm) and the prevention of viral infection. Although the mechanism of COVID-19 is not fully understood, potential clinical targets have been identified for pharmacological, immunological, and vaccinal approaches. Area covered Pharmacological approaches including drug repositioning have been a priority for initial COVID-19 therapy due to the time-consuming nature of the vaccine development process. COVID-19 drugs have been shown to manage the antiviral infection cycle (cell entry and replication of proteins and genomic RNA) and anti-inflammation. In this review, we evaluated the interaction of current COVID-19 drugs with two ATP-binding cassette transporters [P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP)] and potential drug-drug interactions (DDIs) among COVID-19 drugs, especially those associated with P-gp and BCRP efflux transporters. Expert opinion Overall, understanding the pharmacodynamic/pharmacokinetic DDIs of COVID-19 drugs can be useful for pharmacological therapy in COVID-19 patients.
Collapse
Affiliation(s)
- Jaeok Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jihye Kim
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Jiyeon Kang
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| | - Hwa Jeong Lee
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760 Republic of Korea
| |
Collapse
|
10
|
Valorization of Cheese Whey as a Feedstock for Production of Cyclosporin A by Tolypocladium inflatum. FERMENTATION 2022. [DOI: 10.3390/fermentation8120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Food waste-based biorefineries are considered an essential concept for the implementation of a sustainable circular economy. In this study, cheese whey powder (CWP), a dairy industry waste, was utilized to produce cyclosporin A (CsA). As it is difficult to valorize CWP because its components vary depending on the origin, a process for sugar conversion via acid hydrolysis was designed to obtain reproducible results using refined whey powder (WP) of a consistent quality. Acid hydrolysis was carried out using 2% (w/w) HCl and biomass loading of 50 g/L at 121 °C for 20 min. CWP hydrolysates were utilized to ferment Tolypocladium inflatum ATCC 34921. CsA production was found to be 51.3 mg/L at 12 days, a 1.4-fold increase compared to the control (commercial glucose, 36.3 mg/L). Our results showed that 100 g CWP can be converted to 81.8 mg of CsA. This finding demonstrated that CWP can be used as a sustainable feedstock for biorefineries.
Collapse
|
11
|
Todke P, Polaka S, Raval N, Gondaliya P, Tambe V, Maheshwari R, Kalia K, Tekade RK. 'Transfersome-embedded-gel' for dual-mechanistic delivery of anti-psoriatic drugs to dermal lymphocytes. J Microencapsul 2022; 39:495-511. [PMID: 35993180 DOI: 10.1080/02652048.2022.2116119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIM Develop a platform for co-delivering clobetasol propionate (CP) and cyclosporine (CyA) to the epidermis and dermis to treat psoriasis. METHODS The transfersomes were prepared by thin-film hydration method. Transfersomes were characterised by dynamic light scattering and transmission electron microscope (TEM). Then, the gel stability, viscosity, pH, and spreadability were measured. Cytotoxicity of the CyA-loaded transfersome embedded in CP-dispersed gel (TEG-CyA-CP) was assessed on both human keratinocyte cell line (HaCaT) and Jurkat cells. In vitro cellular uptake and ex vivo dermal distribution was measured. The expression of inflammatory markers was assessed by reverse-transcription PCR (RT-PCR). RESULTS Nanoscale (<150 nm) transferosomes with high CyA encapsulation efficiency (>86%) were made. TEG-CyA-CP demonstrated higher viscosity (4808.8 ± 12.01 mPas), which may help control dual drug release. Ex vivo results showed TEG-CyA-CP ability to deliver CyA in the dermis and CP in the epidermis. RT-PCR studies showed the optimised formulation helps reduce the tumour necrosis factor (TNF-α) and interleukin-1 (IL-1) levels to relieve psoriasis symptoms. CONCLUSION The developed TEG-CyA-CP represents a promising fit-to-purpose delivery platform for the dual-site co-delivery of CyA and CP in treating psoriasis.
Collapse
Affiliation(s)
- Pooja Todke
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Suryanarayana Polaka
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Nidhi Raval
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Piyush Gondaliya
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Vishakha Tambe
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Rahul Maheshwari
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Kiran Kalia
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| | - Rakesh Kumar Tekade
- Department of Pharmaceuticals, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad (An Institute of National Importance, Government of India), Ministry of Chemicals and Fertilizers, Gandhinagar, India
| |
Collapse
|
12
|
Cyclosporine and Pentoxifylline laden Tailored Niosomes for the effective management of Psoriasis: In-vitro Optimization, Ex-vivo and Animal Study. Int J Pharm 2022; 626:122143. [PMID: 36037986 DOI: 10.1016/j.ijpharm.2022.122143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022]
Abstract
Psoriasis is a chronic skin inflammatory auto-immune disorder. Cyclosporine is the drug of choice in severe cases of psoriasis for systemic administration. But its systemic administration leads to some serious side effects like nephrotoxicity and cardiovascular disorders. Pentoxifylline is reported to reduce such side effects of cyclosporine and also it is found useful in the management of psoriasis. In this study, Box-Behnken design was used to prepare and optimize Cyclosporine and Pentoxifylline loaded niosomes. The optimized niosomes were prepared using cholesterol and surfactant (7:3), a total of 500µmol. Ratio of Tween 80 to span 80 for the preparation of optimized niosome was 0.503 (tween80:span80), and hydration and sonication time were kept at 60 minutes and 10 minutes, respectively. Size, Poly Dispersity Index, zeta potential, and % entrapment efficiency of Pentoxifylline and cyclosporine, for optimized niosomes were found to be 179nm, 0.285, -37.5mV, 84.6%, and 75.3%, respectively. The optimized niosomes were further studied for in-vitro skin permeation and skin deposition. Though niosomes significantly influenced the permeation of both drugs, only a small amount of drug (both cyclosporine and Pentoxifylline) was permeated through the skin. In comparison with the permeation, the quantity of drug retained in the stratum corneum and viable epidermis (SC and VED) was very high. In the in-vivo studies conducted on mice induced with psoriasis using imiquimod, both the histopathology and psoriasis area severity index has shown marked improvement in the skin condition of mice treated with niosomes loaded with Pentoxifylline and cyclosporine, in comparison with the solution/suspension of individual drugs. The study shows that niosomes could be effectively used for the simultaneous delivery of cyclosporine and Pentoxifylline for the better management of psoriasis.
Collapse
|
13
|
Bian JS. Editorial: Hydrogen sulfide: Physiology, Pharmacology and Toxicology, Volume II. Front Pharmacol 2022; 13:943101. [PMID: 35847013 PMCID: PMC9277574 DOI: 10.3389/fphar.2022.943101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
|