1
|
Ji C, Li S, Hu C, Liu T, Huang Q, Yang M, Yang M, Wang Q, Li A, Guo D, Huang Y, Yin S, Feng S. Traditional Chinese medicine as a promising choice for future control of PEDV. Virus Res 2025; 356:199572. [PMID: 40220931 DOI: 10.1016/j.virusres.2025.199572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Porcine epidemic diarrhea virus (PEDV) is the major agent of the recent outbreaks of diarrhea in piglets, which has caused huge economic losses to the global swine industry. Since traditional vaccine strategies cannot provide complete protection for piglets, the development of safe, effective, and economical antiviral drugs is urgently needed. For many years, traditional Chinese medicines (TCMs) have been broadly applied for viral infectious diseases, exhibiting advantages such as abundant resources, lower toxicity, and minimal drug resistance. Many Chinese herbal monomers, single herbal extracts derived from these traditional drugs, and Chinese herbal recipes exhibit significant anti-PEDV effects in vitro and/or in vivo by targeting multiple sites and perspectives, including inhibition of the viral life cycle, anti-inflammation effects, enhancement of the host immune response, modulation of reactive oxygen species, and apoptosis. However, to date, no review has been published on the anti-PEDV effects of TCM. Therefore, this review summarizes the current control strategies for PEDV and systematically analyses the research progress of TCMs against PEDV. Furthermore, the future directions including the integration of nanotechnology and artificial intelligence with TCMs are also discussed. This review will provide a valuable reference for future studies on TCMs in antiviral research.
Collapse
Affiliation(s)
- Conghao Ji
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China.
| | - Shuxuan Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Cunhai Hu
- Luoyang Yiyin Industrial Co., LTD, Luoyang 471000, China
| | - Tongtong Liu
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qingqing Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mengyuan Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Mengxin Yang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Qianqian Wang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Aifang Li
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Dandan Guo
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Yu Huang
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Sugai Yin
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China
| | - Shuying Feng
- Medical College, Henan University of Chinese Medicine, Zhengzhou 450046, China; Henan Engineering Research Center for Chinese Medicine Foods for Special Medical Purpose, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Altay Benetti A, Thwin MT, Suhaimi A, Liang RST, Ng LFP, Lum FM, Benetti C. Development of Proniosome Gel Formulation for CHIKV Infection. Pharmaceutics 2024; 16:994. [PMID: 39204339 PMCID: PMC11360264 DOI: 10.3390/pharmaceutics16080994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Given the increasing aging population and the rising prevalence of musculoskeletal diseases due to obesity and injury, urgent research is needed to formulate new treatment alternatives, as current options remain inadequate. Viruses can exacerbate arthritis and worsen symptoms in patients with pre-existing osteoarthritis. Over the past decade, the chikungunya virus (CHIKV) has emerged as a significant public health concern, especially in Asia and South America. Exploring natural products, such as berberine, has shown promise due to its anticatabolic, antioxidative, and anti-inflammatory effects. However, berberine's low stability and bioavailability limit its efficacy. We hypothesized that encapsulating berberine into a proniosome gel, known for its ease of preparation and stability, could enhance its bioavailability and efficacy when applied topically, potentially treating CHIKV infection. Our investigation focused on how varying berberine loads and selected excipients in the proniosome gel influenced its physical properties, stability, and skin permeability. We also examined the biological half-life of berberine in plasma upon topical administration in mice to assess the potential for controlled and sustained drug release. Additionally, we analyzed the antioxidant stress activity and cell viability of HaCaT keratinocytes and developed a lipopolysaccharide-stimulated cell culture model to evaluate anti-inflammatory effects using pro-inflammatory cytokines. Overall, the research aims to transform the treatment landscape for arthritis by leveraging berberine's therapeutic potential.
Collapse
Affiliation(s)
- Ayça Altay Benetti
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (M.T.T.); (R.S.T.L.)
| | - Ma Thinzar Thwin
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (M.T.T.); (R.S.T.L.)
| | - Ahmad Suhaimi
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.S.); (L.F.-P.N.)
| | - Ryan Sia Tze Liang
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (M.T.T.); (R.S.T.L.)
| | - Lisa Fong-Poh Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.S.); (L.F.-P.N.)
| | - Fok-Moon Lum
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.S.); (L.F.-P.N.)
| | - Camillo Benetti
- Department of Pharmacy and Pharmaceutical Sciences, National University of Singapore, Singapore 117544, Singapore; (A.A.B.); (M.T.T.); (R.S.T.L.)
| |
Collapse
|
3
|
Zhai Z, Niu J, Xu L, Xu J. Advanced Application of Polymer Nanocarriers in Delivery of Active Ingredients from Traditional Chinese Medicines. Molecules 2024; 29:3520. [PMID: 39124924 PMCID: PMC11314021 DOI: 10.3390/molecules29153520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024] Open
Abstract
Active ingredients from Traditional Chinese Medicines (TCMs) have been a cornerstone of healthcare for millennia, offering a rich source of bioactive compounds with therapeutic potential. However, the clinical application of TCMs is often limited by challenges such as poor solubility, low bioavailability, and variable pharmacokinetics. To address these issues, the development of advanced polymer nanocarriers has emerged as a promising strategy for the delivery of TCMs. This review focuses on the introduction of common active ingredients from TCMs and the recent advancements in the design and application of polymer nanocarriers for enhancing the efficacy and safety of TCMs. We begin by discussing the unique properties of TCMs and the inherent challenges associated with their delivery. We then delve into the types of polymeric nanocarriers, including polymer micelles, polymer vesicles, polymer hydrogels, and polymer drug conjugates, highlighting their application in the delivery of active ingredients from TCMs. The main body of the review presents a comprehensive analysis of the state-of-the-art nanocarrier systems and introduces the impact of these nanocarriers on the solubility, stability, and bioavailability of TCM components. On the basis of this, we provide an outlook on the future directions of polymer nanocarriers in TCM delivery. This review underscores the transformative potential of polymer nanocarriers in revolutionizing TCM delivery, offering a pathway to harness the full therapeutic potential of TCMs while ensuring safety and efficacy in a modern medical context.
Collapse
Affiliation(s)
- Zhiyuan Zhai
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianda Niu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Liguo Xu
- College of Light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan 528333, China
| | - Jinbao Xu
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
4
|
Jo HG, Baek CY, Lee J, Hwang Y, Baek E, Hwang JH, Lee D. Anti-Inflammatory, Analgesic, Functional Improvement, and Chondroprotective Effects of Erigeron breviscapus (Vant.) Hand.-Mazz. Extract in Osteoarthritis: An In Vivo and In Vitro Study. Nutrients 2024; 16:1035. [PMID: 38613068 PMCID: PMC11013172 DOI: 10.3390/nu16071035] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 03/31/2024] [Accepted: 03/31/2024] [Indexed: 04/14/2024] Open
Abstract
Osteoarthritis (OA) is a degenerative bone disease characterized by inflammation as a primary pathology and currently lacks therapeutic interventions to impede its progression. Erigeron breviscapus (Vant.) Hand.-Mazz. (EB) is an east Asian herbal medicine with a long history of use and a wide range of confirmed efficacy against cardiovascular and central nervous system diseases. The purpose of this study is to evaluate whether EB is worthy of further investigation as a treatment for OA based on anti-inflammatory activity. This study aims to assess the potential of EB as a treatment for OA, focusing on its anti-inflammatory properties. Analgesic effects, functional improvements, and inhibition of cartilage destruction induced by EB were evaluated in acetic acid-induced peripheral pain mice and monosodium iodoacetate-induced OA rat models. Additionally, the anti-inflammatory effect of EB was assessed in serum and cartilage tissue in vivo, as well as in lipopolysaccharide-induced RAW 264.7 cells. EB demonstrated a significant alleviation of pain, functional impairment, and cartilage degradation in OA along with a notable inhibition of pro-inflammatory cytokines, including interleukin-1β, interleukin-6, matrix metalloproteinases 13, and nitric oxide synthase 2, both in vitro and in vivo, in a dose-dependent manner compared to the active control. Accordingly, EB merits further exploration as a potential disease-modifying drug for OA, capable of mitigating the multifaceted pathology of osteoarthritis through its anti-inflammatory properties. Nonetheless, additional validation through a broader experimental design is essential to substantiate the findings of this study.
Collapse
Affiliation(s)
- Hee-Geun Jo
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
- Naturalis Inc., 6, Daewangpangyo-ro, Bundang-gu, Seongnam-si 13549, Republic of Korea
| | - Chae Yun Baek
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - JunI Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - Yeseul Hwang
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| | - Eunhye Baek
- RexSoft Inc., 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji Hye Hwang
- Department of Acupuncture and Moxibustion Medicine, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea
| | - Donghun Lee
- Department of Herbal Pharmacology, College of Korean Medicine, Gachon University, 1342 Seongnamdae-ro, Sujeong-gu, Seongnam-si 13120, Republic of Korea; (H.-G.J.)
| |
Collapse
|
5
|
Gomes Souza F, Bhansali S, Pal K, da Silveira Maranhão F, Santos Oliveira M, Valladão VS, Brandão e Silva DS, Silva GB. A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1088. [PMID: 38473560 PMCID: PMC10934506 DOI: 10.3390/ma17051088] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
From 1990 to 2024, this study presents a groundbreaking bibliometric and sentiment analysis of nanocomposite literature, distinguishing itself from existing reviews through its unique computational methodology. Developed by our research group, this novel approach systematically investigates the evolution of nanocomposites, focusing on microstructural characterization, electrical properties, and mechanical behaviors. By deploying advanced Boolean search strategies within the Scopus database, we achieve a meticulous extraction and in-depth exploration of thematic content, a methodological advancement in the field. Our analysis uniquely identifies critical trends and insights concerning nanocomposite microstructure, electrical attributes, and mechanical performance. The paper goes beyond traditional textual analytics and bibliometric evaluation, offering new interpretations of data and highlighting significant collaborative efforts and influential studies within the nanocomposite domain. Our findings uncover the evolution of research language, thematic shifts, and global contributions, providing a distinct and comprehensive view of the dynamic evolution of nanocomposite research. A critical component of this study is the "State-of-the-Art and Gaps Extracted from Results and Discussions" section, which delves into the latest advancements in nanocomposite research. This section details various nanocomposite types and their properties and introduces novel interpretations of their applications, especially in nanocomposite films. By tracing historical progress and identifying emerging trends, this analysis emphasizes the significance of collaboration and influential studies in molding the field. Moreover, the "Literature Review Guided by Artificial Intelligence" section showcases an innovative AI-guided approach to nanocomposite research, a first in this domain. Focusing on articles from 2023, selected based on citation frequency, this method offers a new perspective on the interplay between nanocomposites and their electrical properties. It highlights the composition, structure, and functionality of various systems, integrating recent findings for a comprehensive overview of current knowledge. The sentiment analysis, with an average score of 0.638771, reflects a positive trend in academic discourse and an increasing recognition of the potential of nanocomposites. Our bibliometric analysis, another methodological novelty, maps the intellectual domain, emphasizing pivotal research themes and the influence of crosslinking time on nanocomposite attributes. While acknowledging its limitations, this study exemplifies the indispensable role of our innovative computational tools in synthesizing and understanding the extensive body of nanocomposite literature. This work not only elucidates prevailing trends but also contributes a unique perspective and novel insights, enhancing our understanding of the nanocomposite research field.
Collapse
Affiliation(s)
- Fernando Gomes Souza
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
- Programa de Engenharia da Nanotecnologia, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-914, Brazil;
| | - Shekhar Bhansali
- Biomolecular Sciences Institute, College of Engineering & Computing, Center for Aquatic Chemistry and Environment, Florida International University, 10555 West Flagler St EC3900, Miami, FL 33174, USA
| | - Kaushik Pal
- Department of Physics, University Center for Research and Development (UCRD), Chandigarh University, Mohali 140413, Punjab, India;
| | - Fabíola da Silveira Maranhão
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
| | - Marcella Santos Oliveira
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
| | - Viviane Silva Valladão
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
| | - Daniele Silvéria Brandão e Silva
- Programa de Engenharia da Nanotecnologia, Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia (COPPE), Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-914, Brazil;
| | - Gabriel Bezerra Silva
- Biopolymers & Sensors Lab., Instituto de Macromoléculas Professora Eloisa Mano, Universidade Federal do Rio de Janeiro, Centro de Tecnologia-Cidade Universitária, Rio de Janeiro 21941-853, Brazil; (F.d.S.M.); (M.S.O.); (V.S.V.); (G.B.S.)
| |
Collapse
|