1
|
Castro C, Carvalho A, Gaivão I, Lima-Brito J. Evaluation of copper-induced DNA damage in Vitis vinifera L. using Comet-FISH. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6600-6610. [PMID: 33006094 DOI: 10.1007/s11356-020-10995-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 09/25/2020] [Indexed: 06/11/2023]
Abstract
The contamination of soils and water with copper (Cu) can compromise the crops production and quality. Fungicides containing Cu are widely and intensively used in viticulture contributing to environmental contamination and genotoxicity in Vitis vinifera L. Despite the difficulty in reproducing field conditions in the laboratory, hydroponic solutions enriched with Cu (1, 10, 25 and 50 μM) were used in forced V. vinifera cuttings to evaluate the DNA damage in leaves of four wine-producing varieties ('Tinta Barroca', 'Tinto Cão', 'Malvasia Fina' and 'Viosinho'). Alkaline comet assay followed by fluorescence in situ hybridisation (Comet-FISH) was performed with the 45S ribosomal DNA (rDNA) and telomeric [(TTTAGGG)n] sequences as probes. This study aimed to evaluate the tolerance of the four varieties to different concentrations of Cu and to determine which genomic regions were more prone to DNA damage. The comet assay revealed comets of categories 0 to 4 in all varieties. The DNA damage increased significantly (p < 0.001) with the Cu concentration. 'Tinto Cão' appeared to be the most sensitive variety because it had the highest DNA damage increase in 50 μM Cu relative to the control. Comet-FISH was only performed on slides of the control and 50 μM Cu treatments. Comets of all varieties treated with 50 μM Cu showed rDNA hybridisation on the head, 'halo' and tail (category III), and their frequency was significantly higher than that of control. The frequency of category III comets hybridised with the telomeric probe was only significantly different from the control in 'Malvasia Fina' and 'Tinta Barroca'. Comet-FISH revealed partial damage on rDNA and telomeric DNA in response to Cu but also in control, confirming the high sensitivity of these genomic regions to DNA fragmentation.
Collapse
Affiliation(s)
- Cláudia Castro
- Biosystems & Integrative Sciences Institute-University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
| | - Ana Carvalho
- Biosystems & Integrative Sciences Institute-University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal.
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
- Department of Genetics and Biotechnology, Blocos Laboratoriais, A1.09, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal.
| | - Isabel Gaivão
- Department of Genetics and Biotechnology, Blocos Laboratoriais, A1.09, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
- Animal and Veterinary Research Centre (CECAV), University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| | - José Lima-Brito
- Biosystems & Integrative Sciences Institute-University of Tras-os-Montes and Alto Douro (BioISI-UTAD), Quinta de Prados, 5000-801, Vila Real, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
- Department of Genetics and Biotechnology, Blocos Laboratoriais, A1.09, University of Tras-os-Montes and Alto Douro, Quinta de Prados, 5000-801, Vila Real, Portugal
| |
Collapse
|
2
|
Jaskowiak J, Kwasniewska J, Szurman-Zubrzycka M, Rojek-Jelonek M, Larsen PB, Szarejko I. Al-Tolerant Barley Mutant hvatr.g Shows the ATR-Regulated DNA Damage Response to Maleic Acid Hydrazide. Int J Mol Sci 2020; 21:ijms21228500. [PMID: 33198069 PMCID: PMC7697149 DOI: 10.3390/ijms21228500] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/23/2020] [Accepted: 11/10/2020] [Indexed: 11/27/2022] Open
Abstract
ATR, a DNA damage signaling kinase, is required for cell cycle checkpoint regulation and detecting DNA damage caused by genotoxic factors including Al3+ ions. We analyzed the function of the HvATR gene in response to chemical clastogen-maleic acid hydrazide (MH). For this purpose, the Al-tolerant barley TILLING mutant hvatr.g was used. We described the effects of MH on the nuclear genome of hvatr.g mutant and its WT parent cv. “Sebastian”, showing that the genotoxic effect measured by TUNEL test and frequency of cells with micronuclei was much stronger in hvatr.g than in WT. MH caused a significant decrease in the mitotic activity of root cells in both genotypes, however this effect was significantly stronger in “Sebastian”. The impact of MH on the roots cell cycle, analyzed using flow cytometry, showed no differences between the mutant and WT.
Collapse
Affiliation(s)
- Joanna Jaskowiak
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
| | - Jolanta Kwasniewska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
- Correspondence: ; Tel.: +48-32-200-9468
| | - Miriam Szurman-Zubrzycka
- Plant Genetics and Functional Genomics Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (M.S.-Z.); (I.S.)
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (J.J.); (M.R.-J.)
| | - Paul B. Larsen
- Department of Biochemistry, University of California, Riverside, CA 92521, USA;
| | - Iwona Szarejko
- Plant Genetics and Functional Genomics Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland; (M.S.-Z.); (I.S.)
| |
Collapse
|
3
|
Abstract
The comet assay combined with fluorescence in-situ hybridisation (FISH) is a powerful technique for comparative analyses of damage induction and repair in genomes and in specific DNA sequences within single cells. Recent advances in the methodology of comet-FISH will be considered here, with particular attention to the design and generation of fluorescent probes. In general, all the approaches must fulfil a few basic requirements: the probes should be no longer than ~300 nucleotides in length (single or double stranded) to be able to penetrate the gel in which the target genomic DNA is embedded, they should be sequence-specific, and their signal should be detectable and distinct from the background fluorescence and the dye used to stain the DNA.
Collapse
Affiliation(s)
- Graciela Spivak
- Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94395-5020, USA
| |
Collapse
|