1
|
Mourad AMI, Ahmed AAM, Baenziger PS, Börner A, Sallam A. Broad-spectrum resistance to fungal foliar diseases in wheat: recent efforts and achievements. FRONTIERS IN PLANT SCIENCE 2024; 15:1516317. [PMID: 39735771 PMCID: PMC11671272 DOI: 10.3389/fpls.2024.1516317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/25/2024] [Indexed: 12/31/2024]
Abstract
Wheat (Triticum spp.) is one of the most important cereal crops in the world. Several diseases affect wheat production and can cause 20-80% yield loss annually. Out of these diseases, stripe rust, also known as yellow rust (Puccinia striiformis f. sp. tritici), stem rust (Puccinia graminis f. sp. tritici), leaf rust (Puccinia recondita), and powdery mildew (Blumeria graminis f. sp. tritici) are the most important fungal diseases that infect the foliar part of the plant. Many efforts were made to improve wheat resistance to these diseases. Due to the continuous advancement in sequencing methods and genomic tools, genome-wide association study has become available worldwide. This analysis enabled wheat breeders to detect genomic regions controlling the resistance in specific countries. In this review, molecular markers significantly associated with the resistance of the mentioned foliar diseases in the last five years were reviewed. Common markers that control broad-spectrum resistance in different countries were identified. Furthermore, common genes controlling the resistance of more than one of these foliar diseases were identified. The importance of these genes, their functional annotation, and the potential for gene enrichment are discussed. This review will be valuable to wheat breeders in producing genotypes with broad-spectrum resistance by applying genomic selection for the target common markers and associated genes.
Collapse
Affiliation(s)
- Amira M. I. Mourad
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Agronomy, Faculty of Agriculture, Assuit University, Assiut, Egypt
| | - Asmaa A. M. Ahmed
- Department of Genetics, Faculty of Agriculture, Assuit University, Assiut, Egypt
| | - P. Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska–Lincoln, Lincoln, NE, United States
| | - Andreas Börner
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
| | - Ahmed Sallam
- Genebank Department, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, Germany
- Department of Genetics, Faculty of Agriculture, Assuit University, Assiut, Egypt
| |
Collapse
|
2
|
Chou CH, Lin HS, Wen CH, Tung CW. Patterns of genetic variation and QTLs controlling grain traits in a collection of global wheat germplasm revealed by high-quality SNP markers. BMC PLANT BIOLOGY 2022; 22:455. [PMID: 36131260 PMCID: PMC9494784 DOI: 10.1186/s12870-022-03844-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Establish a molecular breeding program involved assembling a diverse germplasm collection and generating accurate genotypes to characterize their genetic potential and associate them with agronomic traits. In this study, we acquired over eight hundred wheat accessions from international gene banks and assessed their genetic relatedness using high-quality SNP genotypes. Understanding the scope of genomic variation in this collection allows the breeders to utilize the genetic resources efficiently while improving wheat yield and quality. RESULTS A wheat diversity panel comprising 39 durum wheat, 60 spelt wheat, and 765 bread wheat accessions was genotyped on iSelect 90 K wheat SNP arrays. A total of 57,398 SNP markers were mapped to IWGSC RefSeq v2.1 assembly, over 30,000 polymorphic SNPs in the A, B, D genomes were used to analyze population structure and diversity, the results revealed the separation of the three species and the differentiation of CIMMYT improved breeding lines and landraces or widely grown cultivars. In addition, several chromosomal regions under selection were detected. A subset of 280 bread wheat accessions was evaluated for grain traits, including grain length, width, surface area, and color. Genome-wide association studies (GWAS) revealed that several chromosomal regions were significantly linked to known quantitative trait loci (QTL) controlling grain-related traits. One of the SNP peaks at the end of chromosome 7A was in strong linkage disequilibrium (LD) with WAPO-A1, a gene that governs yield components. CONCLUSIONS Here, the most updated and accurate physical positions of SNPs on 90 K genotyping array are provided for the first time. The diverse germplasm collection and associated genotypes are available for the wheat researchers to use in their molecular breeding program. We expect these resources to broaden the genetic basis of original breeding and pre-breeding materials and ultimately identify molecular markers associated with important agronomic traits which are evaluated in diverse environmental conditions.
Collapse
Affiliation(s)
- Chia-Hui Chou
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Hsun-Shih Lin
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chen-Hsin Wen
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chih-Wei Tung
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
3
|
QTL mapping for adult plant resistance to wheat stripe rust in M96-5 × Guixie 3 wheat population. J Appl Genet 2022; 63:265-279. [PMID: 35338429 PMCID: PMC8979893 DOI: 10.1007/s13353-022-00686-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/11/2021] [Accepted: 05/15/2021] [Indexed: 11/02/2022]
Abstract
Development of cultivars with multiple resistances has proven to be an effective way to prevent diseases in wheat breeding. The Guixie 3 variety (GX3) has shown excellent performance in resistance to stripe rust in field for many years. The purpose of this study was to detect quantitative trait loci (QTL) associated with resistance to stripe rust in the adult plant stage and determine closely linked molecular markers. A population of recombinant inbred lines (n = 228) was derived from a cross between the susceptible landrace Mian 96-5 (M96-5) and GX3 variety and evaluated in multiple field studies, and QTL analysis enabled to elucidate genetic architecture of wheat resistance to stripe rust. A total of 19 QTL for stripe rust resistance were mapped on 12 chromosomes using phenotypic data from multiple field tests over the course of 6 years. These chromosomes included 1B (2), 1D (2), 2A (2), 2B (2), 2D (1), 4B (2), 4D (1), 5A (3), 5B (1), 6A (1), 6B (1), and 7B (1). Two stable QTL on chromosomes 2AS (Qyr.gaas.2A) and 6AL (Qyr.gaas.6A) were detected in six and five different environments, respectively; in both QTL, positive allele was contributed by GX3 variety. Qyr.gaas.2A was found to be crucial for increasing adult plant resistance, which may explain the large phenotypic variation of 45.52%. Our results provide theoretical and molecular insight for wheat breeding and suggest the cloning of genes associated with the GX3 variety may be beneficial in future studies.
Collapse
|
4
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
5
|
Hyten DL. Genotyping Platforms for Genome-Wide Association Studies: Options and Practical Considerations. Methods Mol Biol 2022; 2481:29-42. [PMID: 35641757 DOI: 10.1007/978-1-0716-2237-7_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Genome-wide association studies (GWAS) in crops requires genotyping platforms that are capable of producing accurate high density genotyping data on hundreds of plants in a cost-effective manner. Currently there are multiple commercial platforms available that are being effectively used across crops. These platforms include genotyping arrays such as the Illumina Infinium arrays and the Applied Biosystems Axiom Arrays along with a variety of resequencing methods. These methods are being used to genotype tens of thousands of markers up to millions of markers on GWAS panels. They are being used on crops with simple genomes to crops with very complex, large, polyploid genomes. Depending on the crop and the goal of the GWAS, there are several options and practical considerations to take into account when selecting a genotyping technology to ensure that the right coverage, accuracy, and cost for the study is achieved.
Collapse
Affiliation(s)
- David L Hyten
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
6
|
Gahlaut V, Jaiswal V, Balyan HS, Joshi AK, Gupta PK. Multi-Locus GWAS for Grain Weight-Related Traits Under Rain-Fed Conditions in Common Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:758631. [PMID: 34745191 PMCID: PMC8568012 DOI: 10.3389/fpls.2021.758631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 05/04/2023]
Abstract
In wheat, a multi-locus genome-wide association study (ML-GWAS) was conducted for the four grain weight-related traits (days to anthesis, grain filling duration, grain number per ear, and grain weight per ear) using data recorded under irrigated (IR) and rain-fed (RF) conditions. Seven stress-related indices were estimated for these four traits: (i) drought resistance index (DI), (ii) geometric mean productivity (GMP), (iii) mean productivity index (MPI), (iv) relative drought index (RDI), (v) stress tolerance index (STI), (vi) yield index, and (vii) yield stability index (YSI). The association panel consisted of a core collection of 320 spring wheat accessions representing 28 countries. The panel was genotyped using 9,627 single nucleotide polymorphisms (SNPs). The genome-wide association (GWA) analysis provided 30 significant marker-trait associations (MTAs), distributed as follows: (i) IR (15 MTAs), (ii) RF (14 MTAs), and (iii) IR+RF (1 MTA). In addition, 153 MTAs were available for the seven stress-related indices. Five MTAs co-localized with previously reported QTLs/MTAs. Candidate genes (CGs) associated with different MTAs were also worked out. Gene ontology (GO) analysis and expression analysis together allowed the selection of the two CGs, which may be involved in response to drought stress. These two CGs included: TraesCS1A02G331000 encoding RNA helicase and TraesCS4B02G051200 encoding microtubule-associated protein 65. The results supplemented the current knowledge on genetics for drought tolerance in wheat. The results may also be used for future wheat breeding programs to develop drought-tolerant wheat cultivars.
Collapse
Affiliation(s)
- Vijay Gahlaut
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Vandana Jaiswal
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
| | - Harindra S. Balyan
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun Kumar Joshi
- International Maize and Wheat Improvement Center (CIMMYT), New Delhi, India
- Borlaug Institute for South Asia (BISA), New Delhi, India
| | - Pushpendra K. Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| |
Collapse
|
7
|
Mekonnen T, Sneller CH, Haileselassie T, Ziyomo C, Abeyo BG, Goodwin SB, Lule D, Tesfaye K. Genome-Wide Association Study Reveals Novel Genetic Loci for Quantitative Resistance to Septoria Tritici Blotch in Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:671323. [PMID: 34630445 PMCID: PMC8500178 DOI: 10.3389/fpls.2021.671323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Septoria tritici blotch, caused by the fungus Zymoseptoria titici, poses serious and persistent challenges to wheat cultivation in Ethiopia and worldwide. Deploying resistant cultivars is a major component of controlling septoria tritici blotch (STB). Thus, the objective of this study was to elucidate the genomic architecture of STB resistance in an association panel of 178 bread wheat genotypes. The association panel was phenotyped for STB resistance, phenology, yield, and yield-related traits in three locations for 2 years. The panel was also genotyped for single nucleotide polymorphism (SNP) markers using the genotyping-by-sequencing (GBS) method, and a total of 7,776 polymorphic SNPs were used in the subsequent analyses. Marker-trait associations were also computed using a genome association and prediction integrated tool (GAPIT). The study then found that the broad-sense heritability for STB resistance ranged from 0.58 to 0.97 and 0.72 to 0.81 at the individual and across-environment levels, respectively, indicating the presence of STB resistance alleles in the association panel. Population structure and principal component analyses detected two sub-groups with greater degrees of admixture. A linkage disequilibrium (LD) analysis in 338,125 marker pairs also detected the existence of significant (p ≤ 0.01) linkage in 27.6% of the marker pairs. Specifically, in all chromosomes, the LD between SNPs declined within 2.26-105.62 Mbp, with an overall mean of 31.44 Mbp. Furthermore, the association analysis identified 53 loci that were significantly (false discovery rate, FDR, <0.05) associated with STB resistance, further pointing to 33 putative quantitative trait loci (QTLs). Most of these shared similar chromosomes with already published Septoria resistance genes, which were distributed across chromosomes 1B, 1D, 2A, 2B, 2D, 3A,3 B, 3D, 4A, 5A, 5B, 6A, 7A, 7B, and 7D. However, five of the putative QTLs identified on chromosomes 1A, 5D, and 6B appeared to be novel. Dissecting the detected loci on IWGSC RefSeq Annotation v2.1 revealed the existence of disease resistance-associated genes in the identified QTL regions that are involved in plant defense responses. These putative QTLs explained 2.7-13.2% of the total phenotypic variation. Seven of the QTLs (R 2 = 2.7-10.8%) for STB resistance also co-localized with marker-trait associations (MTAs) for agronomic traits. Overall, this analysis reported on putative QTLs for adult plant resistance to STB and some important agronomic traits. The reported and novel QTLs have been identified previously, indicating the potential to improve STB resistance by pyramiding QTLs by marker-assisted selection.
Collapse
Affiliation(s)
- Tilahun Mekonnen
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Clay H. Sneller
- Biosciences Eastern and Central Africa (BecA), Nairobi, Kenya
| | | | - Cathrine Ziyomo
- Biosciences Eastern and Central Africa (BecA), Nairobi, Kenya
| | - Bekele G. Abeyo
- International Maize and Wheat Improvement Center- CIMMYT (Ethiopia), Addis Ababa, Ethiopia
| | - Stephen B. Goodwin
- United States Department of Agriculture (USDA)-Agricultural Research Service, West Lafayette, IN, United States
| | - Dagnachew Lule
- Oromia Agricultural Research Institute (OARI), Addis Ababa, Ethiopia
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
- Ethiopian Biotechnology Institute (EBTi), Addis Ababa, Ethiopia
| |
Collapse
|
8
|
Abou-Zeid MA, Mourad AMI. Genomic regions associated with stripe rust resistance against the Egyptian race revealed by genome-wide association study. BMC PLANT BIOLOGY 2021; 21:42. [PMID: 33446120 PMCID: PMC7809828 DOI: 10.1186/s12870-020-02813-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/22/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Wheat stripe rust (caused by Puccinia striiformis f. sp. Tritici), is a major disease that causes huge yield damage. New pathogen races appeared in the last few years and caused a broke down in the resistant genotypes. In Egypt, some of the resistant genotypes began to be susceptible to stripe rust in recent years. This situation increases the need to produce new genotypes with durable resistance. Besides, looking for a new resistant source from the available wheat genotypes all over the world help in enhancing the breeding programs. RESULTS In the recent study, a set of 103-spring wheat genotypes from different fourteen countries were evaluated to their field resistant to stripe rust for two years. These genotypes included 17 Egyptian genotypes from the old and new cultivars. The 103-spring wheat genotypes were reported to be well adapted to the Egyptian environmental conditions. Out of the tested genotypes, eight genotypes from four different countries were found to be resistant in both years. Genotyping was carried out using genotyping-by-sequencing and a set of 26,703 SNPs were used in the genome-wide association study. Five SNP markers, located on chromosomes 2A and 4A, were found to be significantly associated with the resistance in both years. Three gene models associated with disease resistance and underlying these significant SNPs were identified. One immune Iranian genotype, with the highest number of different alleles from the most resistant Egyptian genotypes, was detected. CONCLUSION the high variation among the tested genotypes in their resistance to the Egyptian stripe rust race confirming the possible improvement of stripe rust resistance in the Egyptian wheat genotypes. The identified five SNP markers are stable and could be used in marker-assisted selection after validation in different genetic backgrounds. Crossing between the immune Iranian genotype and the Egyptian genotypes will improve stripe rust resistance in Egypt.
Collapse
Affiliation(s)
- Mohamed A. Abou-Zeid
- Wheat Disease Research Department, Plant Pathology Research Institute, ARC, Giza, Egypt
| | - Amira M. I. Mourad
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| |
Collapse
|
9
|
Pradhan AK, Kumar S, Singh AK, Budhlakoti N, Mishra DC, Chauhan D, Mittal S, Grover M, Kumar S, Gangwar OP, Kumar S, Gupta A, Bhardwaj SC, Rai A, Singh K. Identification of QTLs/Defense Genes Effective at Seedling Stage Against Prevailing Races of Wheat Stripe Rust in India. Front Genet 2020; 11:572975. [PMID: 33329711 PMCID: PMC7728992 DOI: 10.3389/fgene.2020.572975] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/30/2020] [Indexed: 01/06/2023] Open
Abstract
Resistance in modern wheat cultivars for stripe rust is not long lasting due to the narrow genetic base and periodical evolution of new pathogenic races. Though nearly 83 Yr genes conferring resistance to stripe rust have been cataloged so far, few of them have been mapped and utilized in breeding programs. Characterization of wheat germplasm for novel sources of resistance and their incorporation into elite cultivars is required to achieve durable resistance and thus to minimize the yield losses. Here, a genome-wide association study (GWAS) was performed on a set of 391 germplasm lines with the aim to identify quantitative trait loci (QTL) using 35K Axiom® array. Phenotypic evaluation disease severity against four stripe rust pathotypes, i.e., 46S119, 110S119, 238S119, and 47S103 (T) at the seedling stage in a greenhouse providing optimal conditions was carried out consecutively for 2 years (2018 and 2019 winter season). We identified, a total of 17 promising QTl which passed FDR criteria. Moreover these 17 QTL identified in the current study were mapped at different genomic locations i.e. 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4B, 5B and 6B. These 17 QTLs identified in the present study might play a key role in marker-assisted breeding for developing stripe rust resistant wheat cultivars.
Collapse
Affiliation(s)
- Anjan Kumar Pradhan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Neeraj Budhlakoti
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Dwijesh C Mishra
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Divya Chauhan
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shikha Mittal
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Monendra Grover
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Suneel Kumar
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Om P Gangwar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Subodh Kumar
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Arun Gupta
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Subhash C Bhardwaj
- Indian Council of Agricultural Research-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, India
| | - Anil Rai
- Indian Council of Agricultural Research-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Kuldeep Singh
- Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
10
|
Jamil S, Shahzad R, Ahmad S, Fatima R, Zahid R, Anwar M, Iqbal MZ, Wang X. Role of Genetics, Genomics, and Breeding Approaches to Combat Stripe Rust of Wheat. Front Nutr 2020; 7:580715. [PMID: 33123549 PMCID: PMC7573350 DOI: 10.3389/fnut.2020.580715] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/19/2020] [Indexed: 02/01/2023] Open
Abstract
Puccinia striiformis (Pst) is a devastating biotrophic fungal pathogen that causes wheat stripe rust. It usually loves cool and moist places and can cause 100% crop yield losses in a single field when ideal conditions for disease incidence prevails. Billions of dollars are lost due to fungicide application to reduce stripe rust damage worldwide. Pst is a macrocyclic, heteroecious fungus that requires primary (wheat or grasses) as well as secondary host (Berberis or Mahonia spp.) for completion of life cycle. In this review, we have summarized the knowledge about pathogen life cycle, genes responsible for stripe rust resistance, and susceptibility in wheat. In the end, we discussed the importance of conventional and modern breeding tools for the development of Pst-resistant wheat varieties. According to our findings, genetic engineering and genome editing are less explored tools for the development of Pst-resistant wheat varieties; hence, we highlighted the putative use of advanced genome-modifying tools, i.e., base editing and prime editing, for the development of Pst-resistant wheat.
Collapse
Affiliation(s)
- Shakra Jamil
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Rahil Shahzad
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Rida Fatima
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Rameesha Zahid
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Madiha Anwar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Zaffar Iqbal
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Xiukang Wang
- College of Life Sciences, Yan'an University, Yan'an, China
| |
Collapse
|
11
|
Muhammad A, Hu W, Li Z, Li J, Xie G, Wang J, Wang L. Appraising the Genetic Architecture of Kernel Traits in Hexaploid Wheat Using GWAS. Int J Mol Sci 2020; 21:ijms21165649. [PMID: 32781752 PMCID: PMC7460857 DOI: 10.3390/ijms21165649] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Kernel morphology is one of the major yield traits of wheat, the genetic architecture of which is always important in crop breeding. In this study, we performed a genome-wide association study (GWAS) to appraise the genetic architecture of the kernel traits of 319 wheat accessions using 22,905 single nucleotide polymorphism (SNP) markers from a wheat 90K SNP array. As a result, 111 and 104 significant SNPs for Kernel traits were detected using four multi-locus GWAS models (mrMLM, FASTmrMLM, FASTmrEMMA, and pLARmEB) and three single-locus models (FarmCPU, MLM, and MLMM), respectively. Among the 111 SNPs detected by the multi-locus models, 24 SNPs were simultaneously detected across multiple models, including seven for kernel length, six for kernel width, six for kernels per spike, and five for thousand kernel weight. Interestingly, the five most stable SNPs (RAC875_29540_391, Kukri_07961_503, tplb0034e07_1581, BS00074341_51, and BobWhite_049_3064) were simultaneously detected by at least three multi-locus models. Integrating these newly developed multi-locus GWAS models to unravel the genetic architecture of kernel traits, the mrMLM approach detected the maximum number of SNPs. Furthermore, a total of 41 putative candidate genes were predicted to likely be involved in the genetic architecture underlining kernel traits. These findings can facilitate a better understanding of the complex genetic mechanisms of kernel traits and may lead to the genetic improvement of grain yield in wheat.
Collapse
Affiliation(s)
- Ali Muhammad
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Weicheng Hu
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Zhaoyang Li
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Jianguo Li
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
| | - Guosheng Xie
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
| | - Jibin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Correspondence: (J.W.); (L.W.)
| | - Lingqiang Wang
- College of Plant Science and Technology & Biomass and Bioenergy Research Center, Huazhong Agricultural University, Wuhan 430070, China; (A.M.); (W.H.); (Z.L.); (J.L.); (G.X.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, 100 Daxue Rd., Nanning 530004, China
- Correspondence: (J.W.); (L.W.)
| |
Collapse
|