1
|
Liman R, Ali MM, İstifli ES, Ciğerci İH, Tınaz Ü, Kırlangıç S, Altay N, Uğur YY. Cyto-Genotoxic Assessment of Sulfoxaflor in Allium cepa Root Cells and DNA Docking Studies. Microsc Res Tech 2025; 88:1521-1533. [PMID: 39822116 PMCID: PMC11972448 DOI: 10.1002/jemt.24807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/02/2024] [Accepted: 01/05/2025] [Indexed: 01/19/2025]
Abstract
Sulfoxaflor (SFX) is an insecticide that is commonly used for the control of sap-feeding insects. Since SFX is extensively applied globally, it has been implicated in the substantial induction of environmental toxicity. Therefore, in this study, Allium cepa roots have been employed to elucidate the potential cytogenotoxic effects of SFX in non-target cells by examination of mitotic index (MI), chromosomal aberrations (CAs), and DNA damage. Physiological effects of SFX were evaluated by A. cepa root growth inhibition assay, while cytogenotoxic effects were assessed by A. cepa ana-telophase and comet assay. Moreover, DNA binding affinity and binding mode of SFX were examined using molecular docking simulations to shed light on the genotoxic mechanism of action. The half maximal effective concentration (EC50) on the growth of A. cepa cells calculated for SFX was found as 500 mg/L. Moreover, dose- and time-dependent decrease in MI, increase in CAs (disturbed ana-telophase, chromosomal laggards, stickiness, and anaphase chromosome bridge) and DNA damage were observed by the exposure of A. cepa root tips to SFX after 24-, 48-, 72-, and 96-h treatment periods. A 6-bp double-stranded DNA structure containing two intercalation sites (PDB ID: 1Z3F) was used for docking studies. According to DNA docking results, SFX exhibited an energetically more favorable binding affinity with DNA (ΔG = -5.05 kcal/mol) compared with the experimental mutagen methyl methanesulfonate (MMS) (ΔG = -2.94 kcal/mol), and preferentially snugly fits into the minor groove of DNA possessing an intercalation gap, thus, providing valuable mechanistic data into the formation of chromosome aberrations and DNA fragmentation induced by this pesticide in A. cepa.
Collapse
Affiliation(s)
- Recep Liman
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural SciencesUşak UniversityUşakTurkey
| | - Muhammad Muddassir Ali
- Institute of Biochemistry and BiotechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Erman Salih İstifli
- Cukurova UniversityFaculty of Science and Literature, Department of BiologyAdanaTurkey
| | - İbrahim Hakkı Ciğerci
- Molecular Biology and Genetics Department, Faculty of Science and LiteraturesAfyon Kocatepe UniversityAfyonkarahisarTurkey
| | - Ümran Tınaz
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural SciencesUşak UniversityUşakTurkey
| | - Sidal Kırlangıç
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural SciencesUşak UniversityUşakTurkey
| | - Nejla Altay
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural SciencesUşak UniversityUşakTurkey
| | - Yudum Yeltekin Uğur
- Molecular Biology and Genetics Department, Faculty of Engineering and Natural SciencesUşak UniversityUşakTurkey
| |
Collapse
|
2
|
Beijora SS, Vaz TAC, Santo DE, de Almeida EA, Junior OV, Parolin M, da Silva Gonzalez R, de Souza DC, Peron AP. Prospecting toxicity of the avobenzone sunscreen in plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44308-44317. [PMID: 38951395 DOI: 10.1007/s11356-024-34125-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
Avobenzone (AVO) is a sunscreen with high global production and is constantly released into the environment. Incorporating sewage biosolids for fertilization purposes, the leaching from cultivated soils, and the use of wastewater for irrigation explain its presence in the soil. There is a lack of information about the impact of this sunscreen on plants. In the present study, the ecotoxicity of AVO was tested at concentrations 1, 10, 100, and 1,000 ng/L. All concentrations caused a reduction in root growth of Allium cepa, Cucumis sativus, and Lycopersicum esculentum seeds, as well as a mitodepressive effect, changes in the mitotic spindle and a reduction in root growth of A. cepa bulbs. The cell cycle was disturbed because AVO disarmed the enzymatic defense system of root meristems, leading to an accumulation of hydroxyl radicals and superoxides, besides lipid peroxidation in cells. Therefore, AVO shows a high potential to cause damage to plants and can negatively affect agricultural production and the growth of non-cultivated plants.
Collapse
Affiliation(s)
- Sara Splendor Beijora
- Chemical Engineering Course, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | | | - Diego Espirito Santo
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil
| | | | - Osvaldo Valarini Junior
- Academic Department of Food and Chemical Engineering, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Mauro Parolin
- Graduate Program in Geography, State University of Maringá, Maringá, Paraná, Brazil
| | - Regiane da Silva Gonzalez
- Graduate Program in Food Technology, Federal Technological University of Paraná, Campo Mourão, Paraná, Brazil
| | - Débora Cristina de Souza
- Graduate Program in Water Resources and Environmental Engineering, Federal University of Paraná, Paraná, Brazil
| | - Ana Paula Peron
- Graduate Program in Environmental Engineering, Federal Technological University of Paraná, Francisco Beltrão, Paraná, Brazil.
- Graduate Program in Technological Innovations, Federal Technological University of Paraná Via Rosalina Maria Dos Santos, 1233, Campo Mourão, Paraná, Zip Code 87.301-899, Brazil.
| |
Collapse
|
3
|
Pyatina SA, Shishatskaya EI, Dorokhin AS, Menzyanova NG. Border cell population size and oxidative stress in the root apex of Triticum aestivum seedlings exposed to fungicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25600-25615. [PMID: 38478309 DOI: 10.1007/s11356-024-32840-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
Fungicides reduce the risk of mycopathologies and reduce the content of mycotoxins in commercial grain. The effect of fungicides on the structural and functional status of the root system of grain crops has not been studied enough. In this regard, we studied the phytocytotoxic effects tebuconazole (TEB) and epoxiconazole (EPO) and azoxystrobin (AZO) in the roots of Triticum aestivum seedlings in hydroponic culture. In the presence of EPO and AZO (but not TEB) inhibition of the root growth was accompanied by a dose-dependent increase in the content of malondialdehyde, carbonylated proteins, and proline in roots. TEB was characterized by a dose-dependent decrease in the total amount of border cells (BCs) and the protein content in root extracellular trap (RET). For EPO and AZO, the dose curves of changes in the total number of BCs were bell-shaped. AZO did not affect the protein content in RET. The protein content in RET significantly decreased by 3 times for an EPO concentration of 1 µg/mL. The obtained results reveal that the BC-RET system is one of the functional targets of fungicides in the root system of wheat seedlings. Studied fungicides induce oxidative stress and structural and functional alterations in the BC-RET system that can affect their toxicity to the root system of crops.
Collapse
Affiliation(s)
| | - Ekaterina Igorevna Shishatskaya
- Siberian Federal University, 79 Svobodnyi Av, Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center "Krasnoyarsk Science Center SB RAS", 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| | | | | |
Collapse
|
4
|
Alias C, Zerbini I, Feretti D. A scoping review of recent advances in the application of comet assay to Allium cepa roots. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:264-281. [PMID: 37235708 DOI: 10.1002/em.22553] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
The comet assay is a sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Allium cepa is a well-established plant model for toxicological studies. The aim of this scoping review was to investigate the recent application of the comet assay in Allium cepa root cells to assess the genotoxicity. To explore the literature a search was performed selecting articles published between January 2015 and February 2023 from Web of Science, PubMed, and Scopus databases using the combined search terms "Comet assay" and "Allium cepa". All the original articles that applied the comet assay to Allium cepa root cells were included. Of the 334 records initially found, 79 articles were identified as meeting the inclusion criteria. Some studies reported results for two or more toxicants. In these cases, the data for each toxicant were treated separately. Thus, the number of analyzed toxicants (such as chemicals, new materials, and environmental matrices) was higher than the number of selected papers and reached 90. The current use of the Allium-comet assay seems to be directed towards two types of approach: the direct study of the genotoxicity of compounds, mainly biocides (20% of analyzed compounds) and nano- and microparticles (17%), and assessing a treatment's ability to reduce or eliminate genotoxicity of known genotoxicants (19%). Although the genotoxicity identified by the Allium-comet assay is only one piece of a larger puzzle, this method could be considered a useful tool for screening the genotoxic potential of compounds released into the environment.
Collapse
Affiliation(s)
- Carlotta Alias
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Ilaria Zerbini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Donatella Feretti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
5
|
Acute multiple toxic effects of Trifloxystrobin fungicide on Allium cepa L. Sci Rep 2022; 12:15216. [PMID: 36076029 PMCID: PMC9458729 DOI: 10.1038/s41598-022-19571-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022] Open
Abstract
Trifloxystrobin (TFS) is a strobilurin-type fungicide that should be investigated due to its risks to non-targeted organisms. The goal of this study was to assess the susceptibility of Allium cepa L. to TFS in a multi-pronged approach. For 72 h, 0.2 g/L, 0.4 g/L and 0.8 g/L doses of TFS were administered to A. cepa bulbs and the control group was treated with tap water. The toxic effects of TFS were tested, considering physiological, cytogenetic, biochemical and anatomical analyses. TFS delayed growth by reducing the rooting ratio, root elongation and weight increase. Following TFS treatments, mitotic index (MI) scores decreased, while the formation of micronucleus (MN) and chromosomal aberrations (CAs) ascended. CAs types induced by TFS were listed according to their frequency as fragment, vagrant chromosome, sticky chromosome, uneven distribution of chromatin, bridge, nucleus with vacuoles, reverse polarization and irregular mitosis. TFS provoked an increment in superoxide dismutase (SOD) and catalase (CAT) enzyme activities as well as an accumulation of malondialdehyde (MDA). Meristematic cells of A. cepa roots treated with TFS had various anatomical damages, including damaged epidermis, flattened cell nucleus, damaged cortex and thickness in the cortex cell wall. All damages arising from TFS treatments exhibited dose-dependency. The findings of the present study revealed the serious toxicity of TFS in a non-targeted plant. It should not be neglected to evaluate the potential hazards of TFS with different toxicity tests.
Collapse
|
6
|
Yirmibeş F, Yalçin E, Çavuşoğlu K. Protective role of green tea against paraquat toxicity in Allium cepa L.: physiological, cytogenetic, biochemical, and anatomical assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:23794-23805. [PMID: 34816348 DOI: 10.1007/s11356-021-17313-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
In this study, the toxic effects of paraquat, one of the most commercially sold herbicides in the world, and the protective role of green tea leaf extract (GTLE) against these effects were investigated. Allium cepa L. bulbs (n = 16) were used as test material. One hundred milligrams per liter dose of paraquat and 190 and 380 mg/L doses of GTLE were preferred. Paraquat toxicity was investigated with the help of physiological (percent germination, root length, and weight gain), cytogenetic (mitotic index = MI, micronucleus = MN, and chromosomal damages = CAs), biochemical (superoxide dismutase = SOD, catalase = CAT, malondialdehyde = MDA), and anatomical (meristematic cell damages) parameters. A. cepa bulbs were divided into 6 groups as 1 control and 5 applications. The control group was germinated with tap water, and the application groups were germinated with paraquat and two different doses of GTLE. Germination was carried out at room temperature for 72 h. At the end of the period, A. cepa bulbs were prepared for physiological, cytogenetic, biochemical, and anatomical analyzes using routine preparation techniques. As a result, paraquat application caused a decrease in physiological parameters and an increase in cytogenetic (except MI) and biochemical parameters. Compared to the control (group I), the germination percentage decreased by 38%, root length 12.5 times, and weight gain 5 times decreased in group IV treated with paraquat. MDA level increased 2.58 times, SOD activity 2.48 times, and CAT activity 4.51 times increased. Paraquat application caused a decrease in the percentage of MI and an increase in the number of MN and CAs. Paraquat application caused CAs in the form of fragment, sticky chromosome, unequal distribution of chromatin, bridge, nucleus with vacuoles, nucleus bud, and reverse polarization. In the meristematic cells of the root tips applied paraquat, unclearly vascular tissue, flattened cell nucleus, epidermis, and cortex cell deformation were observed. The application of GTLE together with paraquat caused an increase in the physiological parameter values and a decrease in the cytogenetic (except MI) and biochemical parameter values. An improvement in the severity of damages induced by paraquat was also observed in root tip meristematic cells. It was determined that the improvements observed in all these parameters were related to the dose of GTLE applied. The 380 mg/L dose of GTLE provided more protection than the 190 mg/L dose. Compared to group IV in which paraquat was applied, the germination percentage increased by 21%, root length 5.83 times, and weight gain 2.92 times increased in group VI administered 380 mg/L dose of GTLE. In addition, MDA level decreased 1.78 times, SOD activity 1.59 times and CAT activity 1.65 times. In conclusion, paraquat administration at a dose of 100 mg/L caused physiological, cytogenetic, biochemical, and anatomical toxicity in A. cepa bulbs. GTLE application, on the other hand, resulted in improvements in the severity of this toxicity induced by paraquat, depending on the dose. Therefore, GTLE can be used as an effective nutritional supplement to reduce or prevent the toxicity caused by environmental agents such as pesticides.
Collapse
Affiliation(s)
| | - Emine Yalçin
- Faculty of Science and Art, Department of Biology, Giresun University, Giresun, Turkey
| | - Kültiğin Çavuşoğlu
- Faculty of Science and Art, Department of Biology, Giresun University, Giresun, Turkey.
| |
Collapse
|
7
|
Amaç E, Liman R. Cytotoxic and genotoxic effects of clopyralid herbicide on Allium cepa roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48450-48458. [PMID: 33913105 DOI: 10.1007/s11356-021-13994-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Clopyralid is one of the synthetic pyridine-carboxylate auxin herbicides and used to control perennial and annual broadleaf weeds in wheat, sugar beets, canola, etc. In this study, dose-dependent cytotoxicity and genotoxicity of clopyralid at different concentrations (25, 50, and 100 μg/mL) have been evaluated on the Allium cepa roots. The evaluation has been performed at macroscopic (root growth) and microscopic levels [mitotic index (MI), chromosome aberrations (CAs) in ana-telophase cells, and DNA damage] using root growth inhibition, Allium ana-telophase, and comet tests. The percentage of root growth inhibition and concentration of reducing root growth by 50% (EC50) of clopyralid were determined compared with the negative control by using various concentrations of clopyralid (6.25-1000 μg/L). The 96 h EC50 of clopyralid was recorded as 50 μg/L. The gradual decrease in root growth and the MI reveals the cytotoxic effects of clopyralid. All the tested concentrations of clopyralid induced total CAs (polyploidy, stickiness, anaphase bridges, chromosome laggards, and disturbed ana-telophase) and DNA damage dose and time dependently. These results confirm the cytotoxic and genotoxic effects of clopyralid on non-target organism.
Collapse
Affiliation(s)
- Eslem Amaç
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, 1 Eylül Campus, 64300, Uşak, Turkey
| | - Recep Liman
- Molecular Biology and Genetics Department, Faculty of Arts and Sciences, Uşak University, 1 Eylül Campus, 64300, Uşak, Turkey.
| |
Collapse
|
8
|
Bakare AA, Akpofure A, Gbadebo AM, Fagbenro OS, Oyeyemi IT. Aqueous extract of Moringa oleifera Lam. induced mitodepression and chromosomal aberration in Allium cepa, and reproductive genotoxicity in male mice. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|