1
|
Cortes-Hernández JG, García-Ruiz A, Peñagaricano F, Montaldo HH, Ruiz-López FJ. Uncovering the genetic basis of milk production traits in Mexican Holstein cattle based on individual markers and genomic windows. PLoS One 2025; 20:e0314888. [PMID: 39899530 PMCID: PMC11790082 DOI: 10.1371/journal.pone.0314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/18/2024] [Indexed: 02/05/2025] Open
Abstract
The objective of this study was to evaluate the proportion of genetic variance explained by single nucleotide polymorphism markers, individually or clustered in 1, 2, and 5 Mb windows, for milk yield, fat yield, protein yield, fat content, protein content, and somatic cell score in Mexican Holstein cattle. The analysis included data from 640,746 lactation records of 358,857 cows born between 1979 and 2019, distributed in 353 herds in 18 states of Mexico. The analysis included genotypic data on 7,713 cows and 577 sires, with information on 88,911 markers previously imputed and filtered by quality control. Genomic scans via the single-step genomic best linear unbiased prediction method were performed using BLUPF90 software. A total of 162 markers were significantly associated (p<0.01) with the phenotypic traits evaluated, and the SNP markers were distributed across chromosomes 1, 3, 5, 6, 10, 12, 14, 16, 18, 20, 22, and 29. When the size of the genomic windows was increased from 1 to 5 Mb, a greater proportion of genetic variance was explained by the SNPs within the window, and a greater number of windows explained more than 1% of the genetic variance. The most significant regions were associated with two or more phenotypic traits, such as one region on chromosome 14 that harbors the DGAT1, EXOSC4, PPP1R16A, and FOXH1 genes, which affect all the traits under study. In general, the utilization of genomic windows resulted in a greater proportion of genetic variance explained by milk production traits.
Collapse
Affiliation(s)
- José G. Cortes-Hernández
- PhD Program in Animal Health and Production Science, National Autonomous University of Mexico, Mexico, CDMX, Mexico
| | - Adriana García-Ruiz
- National Center for Disciplinary Research in Animal Physiology and Improvement of the National Institute of Forestry, Agriculture and Livestock Research, Ajuchitlán, Querétaro, Mexico
| | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Hugo H. Montaldo
- Department of Genetics and Biostatistics, Faculty of Veterinary Medicine and Husbandry, National Autonomous University of Mexico, Mexico, CDMX, Mexico
| | - Felipe J. Ruiz-López
- National Center for Disciplinary Research in Animal Physiology and Improvement of the National Institute of Forestry, Agriculture and Livestock Research, Ajuchitlán, Querétaro, Mexico
- Faculty of Higher Studies Cuautitlán, National Autonomous University of Mexico, Mexico, CDMX, Mexico
| |
Collapse
|
2
|
Atashi H, Chen Y, Wilmot H, Vanderick S, Hubin X, Soyeurt H, Gengler N. Single-step genome-wide association for selected milk fatty acids in Dual-Purpose Belgian Blue cows. J Dairy Sci 2023; 106:6299-6315. [PMID: 37479585 DOI: 10.3168/jds.2022-22432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 03/17/2023] [Indexed: 07/23/2023]
Abstract
The aim of this study was to estimate genetic parameters and identify genomic regions associated with selected individual and groups of milk fatty acids (FA) predicted by milk mid-infrared spectrometry in Dual-Purpose Belgian Blue cows. The used data were 69,349 test-day records of milk yield, fat percentage, and protein percentage along with selected individual and groups FA of milk (g/dL milk) collected from 2007 to 2020 on 7,392 first-parity (40,903 test-day records), and 5,185 second-parity (28,446 test-day records) cows distributed in 104 herds in the Walloon Region of Belgium. Data of 28,466 SNPs, located on 29 Bos taurus autosomes (BTA), of 1,699 animals (639 males and 1,060 females) were used. Random regression test-day models were used to estimate genetic parameters through the Bayesian Gibbs sampling method. The SNP solutions were estimated using a single-step genomic best linear unbiased prediction approach. The proportion of genetic variance explained by each 25-SNP sliding window (with an average size of ~2 Mb) was calculated, and regions accounting for at least 1.0% of the total additive genetic variance were used to search for candidate genes. Average daily heritability estimated for the included milk FA traits ranged from 0.01 (C4:0) to 0.48 (C12:0) and 0.01 (C4:0) to 0.42 (C12:0) in the first and second parities, respectively. Genetic correlations found between milk yield and the studied individual milk FA, except for C18:0, C18:1 trans, C18:1 cis-9, were positive. The results showed that fat percentage and protein percentage were positively genetically correlated with all studied individual milk FA. Genome-wide association analyses identified 11 genomic regions distributed over 8 chromosomes [BTA1, BTA4, BTA10, BTA14 (4 regions), BTA19, BTA22, BTA24, and BTA26] associated with the studied FA traits, though those found on BTA14 partly overlapped. The genomic regions identified differed between parities and lactation stages. Although these differences in genomic regions detected may be due to the power of quantitative trait locus detection, it also suggests that candidate genes underlie the phenotypic expression of the studied traits may vary between parities and lactation stages. These findings increase our understanding about the genetic background of milk FA and can be used for the future implementation of genomic evaluation to improve milk FA profile in Dual-Purpose Belgian Blue cows.
Collapse
Affiliation(s)
- H Atashi
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; Department of Animal Science, Shiraz University, 71441-13131 Shiraz, Iran.
| | - Y Chen
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - H Wilmot
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium; National Fund for Scientific Research (F.R.S.-FNRS), 1000 Brussels, Belgium
| | - S Vanderick
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - X Hubin
- Elevéo asbl Awé Group, 5590 Ciney, Belgium
| | - H Soyeurt
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| | - N Gengler
- TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium
| |
Collapse
|
3
|
Brajnik Z, Ogorevc J. Candidate genes for mastitis resistance in dairy cattle: a data integration approach. J Anim Sci Biotechnol 2023; 14:10. [PMID: 36759924 PMCID: PMC9912691 DOI: 10.1186/s40104-022-00821-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/09/2022] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND Inflammation of the mammary tissue (mastitis) is one of the most detrimental health conditions in dairy ruminants and is considered the most economically important infectious disease of the dairy sector. Improving mastitis resistance is becoming an important goal in dairy ruminant breeding programmes. However, mastitis resistance is a complex trait and identification of mastitis-associated alleles in livestock is difficult. Currently, the only applicable approach to identify candidate loci for complex traits in large farm animals is to combine different information that supports the functionality of the identified genomic regions with respect to a complex trait. METHODS To identify the most promising candidate loci for mastitis resistance we integrated heterogeneous data from multiple sources and compiled the information into a comprehensive database of mastitis-associated candidate loci. Mastitis-associated candidate genes reported in association, expression, and mouse model studies were collected by searching the relevant literature and databases. The collected data were integrated into a single database, screened for overlaps, and used for gene set enrichment analysis. RESULTS The database contains candidate genes from association and expression studies and relevant transgenic mouse models. The 2448 collected candidate loci are evenly distributed across bovine chromosomes. Data integration and analysis revealed overlaps between different studies and/or with mastitis-associated QTL, revealing promising candidate genes for mastitis resistance. CONCLUSION Mastitis resistance is a complex trait influenced by numerous alleles. Based on the number of independent studies, we were able to prioritise candidate genes and propose a list of the 22 most promising. To our knowledge this is the most comprehensive database of mastitis associated candidate genes and could be helpful in selecting genes for functional validation studies.
Collapse
Affiliation(s)
- Zala Brajnik
- grid.8954.00000 0001 0721 6013Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230 Slovenia
| | - Jernej Ogorevc
- Biotechnical Faculty, Department of Animal Science, University of Ljubljana, Groblje 3, Domzale, SI-1230, Slovenia.
| |
Collapse
|
4
|
Narayana SG, de Jong E, Schenkel FS, Fonseca PA, Chud TC, Powel D, Wachoski-Dark G, Ronksley PE, Miglior F, Orsel K, Barkema HW. Underlying genetic architecture of resistance to mastitis in dairy cattle: A systematic review and gene prioritization analysis of genome-wide association studies. J Dairy Sci 2022; 106:323-351. [DOI: 10.3168/jds.2022-21923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/01/2022] [Indexed: 11/05/2022]
|
5
|
Barden M, Li B, Griffiths BE, Anagnostopoulos A, Bedford C, Psifidi A, Banos G, Oikonomou G. Genetic parameters and genome-wide association study of digital cushion thickness in Holstein cows. J Dairy Sci 2022; 105:8237-8256. [PMID: 36028347 PMCID: PMC9511494 DOI: 10.3168/jds.2022-22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/27/2022] [Indexed: 11/19/2022]
Abstract
The digital cushion is linked to the development of claw horn lesions (CHL) in dairy cattle. The objectives of this study were to (1) estimate genetic parameters for digital cushion thickness (DCT), (2) estimate the genetic correlation between DCT and CHL, and (3) identify candidate genes associated with DCT. A cohort of 2,352 Holstein dairy cows were prospectively enrolled on 4 farms and assessed at 4 time points: before calving, immediately after calving, in early lactation, and in late lactation. At each time point, CHL was recorded by veterinary surgeons, and ultrasonographic images of the digital cushion were stored and retrospectively measured at 2 anatomical locations. Animals were genotyped and pedigree details extracted from the national database. Genetic parameters were estimated following a single-step approach implemented in AIREMLF90. Four traits were analyzed: the 2 DCT measurements, sole lesions (sole hemorrhage and sole ulcers), and white line lesions. All traits were analyzed with univariate linear mixed models; bivariate models were fit to estimate the genetic correlation between traits within and between time points. Single-marker and window-based genome-wide association analyses of DCT traits were conducted at each time point; candidate genes were mapped near (<0.2 Mb) or within the genomic markers or windows with the largest effects. Heritability estimates of DCT ranged from 0.14 to 0.44 depending on the location of DCT measurement and assessment time point. The genetic correlation between DCT and sole lesions was generally negative, notably between DCT immediately after calving and sole lesions in early or late lactation, and between DCT in early or late lactation and sole lesion severity in early or late lactation. Digital cushion thickness was not genetically correlated with white line lesions. A polygenic background to DCT was found; genes associated with inflammation, fat metabolism, and bone development were mapped near or within the top markers and windows. The moderate heritability of DCT provides an opportunity to use selective breeding to change DCT in a population. The negative genetic correlation between DCT and sole lesions at different stages of production lends support to current hypotheses of sole lesion pathogenesis. Highlighted candidate genes provide information regarding the complex genetic background of DCT in Holstein cows, but further studies are needed to explore and corroborate these findings.
Collapse
Affiliation(s)
- Matthew Barden
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom.
| | - Bingjie Li
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Bethany E Griffiths
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Alkiviadis Anagnostopoulos
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Cherry Bedford
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| | - Androniki Psifidi
- Department of Clinical Science and Services, Royal Veterinary College, North Mymms, Hertfordshire, AL9 7TA, United Kingdom
| | - Georgios Banos
- Animal & Veterinary Sciences, SRUC, Roslin Institute Building, Easter Bush, Midlothian, EH25 9RG, United Kingdom
| | - Georgios Oikonomou
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Leahurst Campus, Liverpool, CH64 7TE, United Kingdom
| |
Collapse
|
6
|
Mulim HA, Brito LF, Pinto LFB, Ferraz JBS, Grigoletto L, Silva MR, Pedrosa VB. Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genomics 2022; 23:209. [PMID: 35291953 PMCID: PMC8925140 DOI: 10.1186/s12864-022-08384-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/10/2022] [Indexed: 01/12/2023] Open
Abstract
Background A decline in the level of genetic diversity in livestock can result in reduced response to selection, greater incidence of genetic defects, and inbreeding depression. In this context, various metrics have been proposed to assess the level of genetic diversity in selected populations. Therefore, the main goals of this study were to: 1) investigate the population structure of 16 cattle populations from 15 different pure breeds or composite populations, which have been selected for different breeds goals; and, 2) identify and compare runs of homozygosity (ROH) and heterozygosity-enriched regions (HER) based on different single nucleotide polymorphism (SNP) panels and whole-genome sequence data (WGS), followed by functional genomic analyses. Results A total of 24,187 ROH were found across all cattle populations, with 55% classified in the 2-4 Mb size group. Fourteen homozygosity islands were found in five populations, where four ROH islands located on BTA1, BTA5, BTA16, and BTA19 overlapped between the Brahman (BRM) and Gyr (GIR) breeds. A functional analysis of the genes found in these islands revealed candidate genes known to play a role in the melanogenesis, prolactin signaling, and calcium signaling pathways. The correlations between inbreeding metrics ranged from 0.02 to 0.95, where the methods based on homozygous genotypes (FHOM), uniting of gametes (FUNI), and genotype additive variance (FGRM) showed strong correlations among them. All methods yielded low to moderate correlations with the inbreeding coefficients based on runs of homozygosity (FROH). For the HER, 3576 runs and 26 islands, distributed across all autosomal chromosomes, were found in regions containing genes mainly related to the immune system, indicating potential balancing selection. Although the analyses with WGS did not enable detection of the same island patterns, it unraveled novel regions not captured when using SNP panel data. Conclusions The cattle populations that showed the largest amount of ROH and HER were Senepol (SEN) and Montana (MON), respectively. Overlapping ROH islands were identified between GIR and BRM breeds, indicating a possible historical connection between the populations. The distribution and pattern of ROH and HER are population specific, indicating that different breeds have experienced divergent selection processes or different genetic processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08384-0.
Collapse
Affiliation(s)
| | - Luiz F Brito
- Department of Animal Science, Purdue University, West Lafayette, Indiana, USA
| | | | - José Bento Sterman Ferraz
- Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | - Lais Grigoletto
- Department of Animal Science, Purdue University, West Lafayette, Indiana, USA.,Department of Animal Sciences, College of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, São Paulo, Brazil
| | | | - Victor Breno Pedrosa
- Department of Animal Science, Federal University of Bahia, Salvador, Bahia, Brazil. .,Department of Animal Science, State University of Ponta Grossa, Av. General Carlos Cavalcanti, 4748 - Uvaranas, Ponta Grossa, PR, 84030-900, Brazil.
| |
Collapse
|
7
|
Atashi H, Wilmot H, Vanderick S, Hubin X, Gengler N. Genome-wide association study for milk production traits in Dual-Purpose Belgian Blue cows. Livest Sci 2022. [DOI: 10.1016/j.livsci.2022.104831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Buaban S, Lengnudum K, Boonkum W, Phakdeedindan P. Genome-wide association study on milk production and somatic cell score for Thai dairy cattle using weighted single-step approach with random regression test-day model. J Dairy Sci 2021; 105:468-494. [PMID: 34756438 DOI: 10.3168/jds.2020-19826] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 08/24/2021] [Indexed: 12/26/2022]
Abstract
Genome-wide association studies are a powerful tool to identify genomic regions and variants associated with phenotypes. However, only limited mutual confirmation from different studies is available. The objectives of this study were to identify genomic regions as well as genes and pathways associated with the first-lactation milk, fat, protein, and total solid yields; fat, protein, and total solid percentage; and somatic cell score (SCS) in a Thai dairy cattle population. Effects of SNPs were estimated by a weighted single-step GWAS, which back-solved the genomic breeding values predicted using single-step genomic BLUP (ssGBLUP) fitting a single-trait random regression test-day model. Genomic regions that explained at least 0.5% of the total genetic variance were selected for further analyses of candidate genes. Despite the small number of genotyped animals, genomic predictions led to an improvement in the accuracy over the traditional BLUP. Genomic predictions using weighted ssGBLUP were slightly better than the ssGBLUP. The genomic regions associated with milk production traits contained 210 candidate genes on 19 chromosomes [Bos taurus autosome (BTA) 1 to 7, 9, 11 to 16, 20 to 21, 26 to 27 and 29], whereas 21 candidate genes on 3 chromosomes (BTA 11, 16, and 21) were associated with SCS. Many genomic regions explained a small fraction of the genetic variance, indicating polygenic inheritance of the studied traits. Several candidate genes coincided with previous reports for milk production traits in Holstein cattle, especially a large region of genes on BTA14. We identified 141 and 5 novel genes related to milk production and SCS, respectively. These novel genes were also found to be functionally related to heat tolerance (e.g., SLC45A2, IRAG1, and LOC101902172), longevity (e.g., SYT10 and LOC101903327), and fertility (e.g., PAG1). These findings may be attributed to indirect selection in our population. Identified biological networks including intracellular cell transportation and protein catabolism implicate milk production, whereas the immunological pathways such as lymphocyte activation are closely related to SCS. Further studies are required to validate our findings before exploiting them in genomic selection.
Collapse
Affiliation(s)
- S Buaban
- Bureau of Animal Husbandry and Genetic Improvement, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - K Lengnudum
- Bureau of Biotechnology in Livestock Production, Department of Livestock Development, Pathum Thani 12000, Thailand
| | - W Boonkum
- Department of Animal Science, Faculty of Agriculture, Khon Kaen University, Khon Kaen 40002, Thailand
| | - P Phakdeedindan
- Department of Animal Husbandry, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand; Genomics and Precision Dentistry Research Unit, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
9
|
Manca E, Cesarani A, Falchi L, Atzori AS, Gaspa G, Rossoni A, Macciotta NPP, Dimauro C. Genome-wide association study for residual concentrate intake using different approaches in Italian Brown Swiss. ITALIAN JOURNAL OF ANIMAL SCIENCE 2021. [DOI: 10.1080/1828051x.2021.1963864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- E. Manca
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - A. Cesarani
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - L. Falchi
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - A. S. Atzori
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| | - G. Gaspa
- Dipartimento di Scienze Agrarie, Forestali e Alimentari, University of Torino, Grugliasco, Italy
| | - A. Rossoni
- Associazione Nazionale degli Allevatori di Razza Bruna (ANARB), Verona, Italy
| | | | - C. Dimauro
- Dipartimento di Agraria, University of Sassari, Sassari, Italy
| |
Collapse
|
10
|
Lázaro SF, Tonhati H, Oliveira HR, Silva AA, Nascimento AV, Santos DJA, Stefani G, Brito LF. Genomic studies of milk-related traits in water buffalo (Bubalus bubalis) based on single-step genomic best linear unbiased prediction and random regression models. J Dairy Sci 2021; 104:5768-5793. [PMID: 33685677 DOI: 10.3168/jds.2020-19534] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 01/02/2021] [Indexed: 01/14/2023]
Abstract
Genomic selection has been widely implemented in many livestock breeding programs, but it remains incipient in buffalo. Therefore, this study aimed to (1) estimate variance components incorporating genomic information in Murrah buffalo; (2) evaluate the performance of genomic prediction for milk-related traits using single- and multitrait random regression models (RRM) and the single-step genomic best linear unbiased prediction approach; and (3) estimate longitudinal SNP effects and candidate genes potentially associated with time-dependent variation in milk, fat, and protein yields, as well as somatic cell score (SCS) in multiple parities. The data used to estimate the genetic parameters consisted of a total of 323,140 test-day records. The average daily heritability estimates were moderate (0.35 ± 0.02 for milk yield, 0.22 ± 0.03 for fat yield, 0.42 ± 0.03 for protein yield, and 0.16 ± 0.03 for SCS). The highest heritability estimates, considering all traits studied, were observed between 20 and 280 d in milk (DIM). The genetic correlation estimates at different DIM among the evaluated traits ranged from -0.10 (156 to 185 DIM for SCS) to 0.61 (36 to 65 DIM for fat yield). In general, direct selection for any of the traits evaluated is expected to result in indirect genetic gains for milk yield, fat yield, and protein yield but also increase SCS at certain lactation stages, which is undesirable. The predicted RRM coefficients were used to derive the genomic estimated breeding values (GEBV) for each time point (from 5 to 305 DIM). In general, the tuning parameters evaluated when constructing the hybrid genomic relationship matrices had a small effect on the GEBV accuracy and a greater effect on the bias estimates. The SNP solutions were back-solved from the GEBV predicted from the Legendre random regression coefficients, which were then used to estimate the longitudinal SNP effects (from 5 to 305 DIM). The daily SNP effect for 3 different lactation stages were performed considering 3 different lactation stages for each trait and parity: from 5 to 70, from 71 to 150, and from 151 to 305 DIM. Important genomic regions related to the analyzed traits and parities that explain more than 0.50% of the total additive genetic variance were selected for further analyses of candidate genes. In general, similar potential candidate genes were found between traits, but our results suggest evidence of differential sets of candidate genes underlying the phenotypic expression of the traits across parities. These results contribute to a better understanding of the genetic architecture of milk production traits in dairy buffalo and reinforce the relevance of incorporating genomic information to genetically evaluate longitudinal traits in dairy buffalo. Furthermore, the candidate genes identified can be used as target genes in future functional genomics studies.
Collapse
Affiliation(s)
- Sirlene F Lázaro
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Humberto Tonhati
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Hinayah R Oliveira
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907; Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, N1G 2W1, ON, Canada
| | - Alessandra A Silva
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - André V Nascimento
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Daniel J A Santos
- Department of Animal and Avian Science, University of Maryland, College Park 20742
| | - Gabriela Stefani
- Department of Animal Science, College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, 14884-900, SP, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907.
| |
Collapse
|