1
|
Buzitis NW, Wu D, Kinlein Z, Clowers BH. Phase Modulation to Increase Ion Throughput for Ion Mobility-Time-of-Flight Experiments. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025. [PMID: 40389380 DOI: 10.1021/jasms.5c00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
Implementing a phase-based gating scheme with structures for lossless ion manipulation and a time-of-flight mass analyzer significantly enhances analytical efficiency. Phased ion mobility spectrometry substantially reduces the experimental analysis duration compared to single injection, signal-averaged structures for lossless ion manipulation (SLIM), without compromising separative capabilities. Notably, the observed duty cycle in phased ion mobility spectrometry increases 10x compared to signal-averaged SLIM experiments. A 6-m SLIM system, integrated with a time-of-flight mass analyzer, demonstrates equivalent separative capabilities and resolving power in both signal-averaged and phased-ion mobility modes. However, substantial duty cycle and ion efficiency improvements are evident during phased ion mobility spectrometry. The determination of the numerical integer required for accurate arrival times can be achieved algebraically or directly derived from measured arrival times in signal-averaged experiments. This methodology seamlessly integrates into existing single-gated SLIM or drift tube ion mobility-mass spectrometry instrumentation with minimal experimental adjustments, directly enhancing the observed duty cycle and reducing experimental analysis times.
Collapse
Affiliation(s)
- Nathan W Buzitis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Daniel Wu
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Zackary Kinlein
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
2
|
Buzitis NW, Clowers BH. Efficient Coupling of Structures for Lossless Ion Manipulations with Ion Trap Mass Analyzers Using Phase Modulation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2025; 36:424-432. [PMID: 39754593 DOI: 10.1021/jasms.4c00490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Phased structures for lossless ion manipulation offer significant improvements over the scanning second gate method for coupling with ion trap mass analyzers. With an experimental run time of under 1 min for select conditions and an average run time of less than 4 min, this approach significantly reduces experimental time while enhancing the temporal duty cycle. The outlined SLIM system connects to an ion trap mass analyzer via a PCB stacked ring ion guide, which replaces the commercial ion optics and capillary inlet. By applying a discrete and repeating injection pulse and solving a series of algebraic equations, the system reconstructs an arrival time distribution with a minimal degree of error with enhanced ion throughput. To demonstrate the feasibility of this approach, the 3.4-m SLIM system resolves gas-phase conformers for various small peptides and proteins. This system and methodology also enable direct implementation between SLIM and ion trap mass analyzers traditionally interfaced with front separation systems such as liquid chromatography.
Collapse
Affiliation(s)
- Nathan W Buzitis
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Brian H Clowers
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
3
|
Buzitis NW, Clowers BH. Development of a Modular, Open-Source, Reduced-Pressure, Drift Tube Ion Mobility Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:804-813. [PMID: 38512132 PMCID: PMC11753826 DOI: 10.1021/jasms.4c00057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Toward the goal of minimizing construction costs while maintaining high performance, a new, reduced-pressure, drift tube ion mobility system is coupled with an ion trap mass analyzer through a custom ion shuttle. The availability of reduced-pressure ion mobility systems remains limited due to comparatively expensive commercial options and limited shared design features in the open literature. This report details the complete design and benchmarking characteristics of a reduced-pressure ion mobility system. The system is constructed from FR4 PCB electrodes and encased in a PTFE vacuum enclosure with custom torque-tightened couplers to utilize standard KF40 bulkheads. The PTFE enclosure directly minimizes the overall system expenses, and the implementation of threaded brass inserts allows for facile attachments to the vacuum enclosure without damaging the thermoplastic housing. Front and rear ion funnels maximize ion transmission and help mitigate the effects of radial ion diffusion. A custom planar ion shuttle transports ions from the exit of the rear ion funnel into the ion optics of an ion trap mass analyzer. The planar ion shuttle can couple the IM system to any contemporary Thermo Scientific ion trap mass analyzer. Signal stability and ion intensity remain unchanging following the implementation of the planar ion shuttle when compared to the original stacked ring ion guide. The constructed IM system showed resolving powers up to 85 for various small molecules and proteins using the Fourier transform from a ∼1 m drift tube. Recorded mobilities derived from first principles agree with published literature results with an average error of 1.1% and an average error toward literature values using single field calibration of <1.3%.
Collapse
Affiliation(s)
- Nathan W. Buzitis
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Brian H. Clowers
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
4
|
West CP, Mesa Sanchez D, Morales AC, Hsu YJ, Ryan J, Darmody A, Slipchenko LV, Laskin J, Laskin A. Molecular and Structural Characterization of Isomeric Compounds in Atmospheric Organic Aerosol Using Ion Mobility-Mass Spectrometry. J Phys Chem A 2023; 127:1656-1674. [PMID: 36763810 DOI: 10.1021/acs.jpca.2c06459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Secondary organic aerosol (SOA) formed through multiphase atmospheric chemistry makes up a large fraction of airborne particles. The chemical composition and molecular structures of SOA constituents vary between different emission sources and aging processes in the atmosphere, which complicates their identification. In this work, we employ drift tube ion mobility spectrometry with quadrupole time-of-flight mass spectrometry (IM-MS) detection for rapid gas-phase separation and multidimensional characterization of isomers in two biogenic SOAs produced from ozonolysis of isomeric monoterpenes, d-limonene (LSOA) and α-pinene (PSOA). SOA samples were ionized using electrospray ionization (ESI) and characterized using IM-MS in both positive and negative ionization modes. The IM-derived collision cross sections in nitrogen gas (DTCCSN2 ) for individual SOA components were obtained using multifield and single-field measurements. A novel application of IM multiplexing/high-resolution demultiplexing methodology was employed to increase sensitivity, improve peak shapes, and augment mobility baseline resolution, which revealed several isomeric structures for the measured ions. For LSOA and PSOA samples, we report significant structural differences of the isomer structures. Molecular structural calculations using density functional theory combined with the theoretical modeling of CCS values provide insights into the structural differences between LSOA and PSOA constituents. The average DTCCSN2 values for monomeric SOA components observed as [M + Na]+ ions are 3-6% higher than those of their [M - H]- counterparts. Meanwhile, dimeric and trimeric isomer components in both samples showed an inverse trend with the relevant values of [M - H]- ions being 3-7% higher than their [M + Na]+ counterparts, respectively. The results indicate that the structures of Na+-coordinated oligomeric ions are more compact than those of the corresponding deprotonated species. The coordination with Na+ occurs on the oxygen atoms of the carbonyl groups leading to a compact configuration. Meanwhile, deprotonated molecules have higher DTCCSN2 values due to their elongated structures in the gas phase. Therefore, DTCCSN2 values of isomers in SOA mixtures depend strongly on the mode of ionization in ESI. Additionally, PSOA monomers and dimers exhibit larger DTCCSN2 values (1-4%) than their LSOA counterparts owing to more rigid structures. A cyclobutane ring is present with functional groups pointing in opposite directions in PSOA compounds, as compared to noncyclic flexible LSOA structures, forming more compact ions in the gas phase. Lastly, we investigated the effects of direct photolysis on the chemical transformations of selected individual PSOA components. We use IM-MS to reveal structural changes associated with aerosol aging by photolysis. This study illustrates the detailed molecular and structural descriptors for the detection and annotation of structural isomers in complex SOA mixtures.
Collapse
Affiliation(s)
- Christopher P West
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Daniela Mesa Sanchez
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ana C Morales
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yun-Jung Hsu
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jackson Ryan
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew Darmody
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Aeronautics and Aerospace Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Julia Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Laskin
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Earth, Atmospheric & Planetary Sciences, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
5
|
Velosa DC, Dunham AJ, Rivera ME, Neal SP, Chouinard CD. Improved Ion Mobility Separation and Structural Characterization of Steroids using Derivatization Methods. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1761-1771. [PMID: 35914213 DOI: 10.1021/jasms.2c00164] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Steroids are an important class of biomolecules studied for their role in metabolism, development, nutrition, and disease. Although highly sensitive GC- and LC-MS/MS-based methods have been developed for targeted quantitation of known steroid metabolites, emerging techniques including ion mobility (IM) have shown promise in improved analysis and capacity to better identify unknowns in complex biological samples. Herein, we couple LC-IM-MS/MS with structurally selective reactions targeting hydroxyl and carbonyl functional groups to improve IM resolution and structural elucidation. We demonstrate that 1,1-carbonyldiimidazole derivatization of hydroxyl stereoisomer pairs such as testosterone/epitestosterone and androsterone/epiandrosterone results in increased IM resolution with ΔCCS > 15%. Additionally, performing this in parallel with derivatization of the carbonyl group by Girard's Reagent P resulted in unique products based on relative differences in number of each functional group and C17 alkylation. These changes could be easily deciphered using the combination of retention time, collision cross section, accurate mass, and MS/MS fragmentation pattern. Derivatization by Girard's Reagent P, which contains a fixed charge quaternary amine, also increased the ionization efficiency and could be explored for its potential benefit to sensitivity. Overall, the combination of these simple and easy derivatization reactions with LC-IM-MS/MS analysis provides a method for improved analysis of known target analytes while also yielding critical structural information that can be used for identification of potential unknowns.
Collapse
Affiliation(s)
- Diana C Velosa
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Andrew J Dunham
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Marcus E Rivera
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Shon P Neal
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| | - Christopher D Chouinard
- Chemistry Program, Department of Biomedical and Chemical Engineering and Sciences, Florida Institute of Technology, Melbourne, Florida 32904, United States
| |
Collapse
|
6
|
Valadbeigi Y, Bayat S, Ilbeigi V. A Novel Application of Dopants in Ion Mobility Spectrometry: Suppression of Fragment Ions of Citric Acid. Anal Chem 2020; 92:7924-7931. [DOI: 10.1021/acs.analchem.0c01318] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Sahar Bayat
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vahideh Ilbeigi
- TOF Tech. Pars Company, Isfahan Science & Technology Town, Isfahan, Iran
| |
Collapse
|
7
|
Valadbeigi Y, Azizmohammadi S, Ilbeigi V. Small Host–Guest Systems in the Gas Phase: Tartaric Acid as a Host for both Anionic and Cationic Guests in the Atmospheric Pressure Chemical Ionization Source of Ion Mobility Spectrometry. J Phys Chem A 2020; 124:3386-3397. [DOI: 10.1021/acs.jpca.0c00118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Younes Valadbeigi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Sima Azizmohammadi
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran
| | - Vahideh Ilbeigi
- TOF Tech. Pars Company, Isfahan Science & Technology Town, Isfahan, Iran
| |
Collapse
|
8
|
Cho E, Riches E, Palmer M, Giles K, Ujma J, Kim S. Isolation of Crude Oil Peaks Differing by m/z ∼0.1 via Tandem Mass Spectrometry Using a Cyclic Ion Mobility-Mass Spectrometer. Anal Chem 2019; 91:14268-14274. [DOI: 10.1021/acs.analchem.9b02255] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Eunji Cho
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Eleanor Riches
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Martin Palmer
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Kevin Giles
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Jakub Ujma
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, United Kingdom
| | - Sunghwan Kim
- Department of Chemistry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
- Green-Nano Materials Research Center, Daegu 41566, Republic of Korea
| |
Collapse
|
9
|
Ewing MA, Glover MS, Clemmer DE. Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A 2016; 1439:3-25. [DOI: 10.1016/j.chroma.2015.10.080] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 10/05/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022]
|
10
|
Cumeras R, Figueras E, Davis CE, Baumbach JI, Gràcia I. Review on ion mobility spectrometry. Part 2: hyphenated methods and effects of experimental parameters. Analyst 2015; 140:1391-410. [PMID: 25465248 PMCID: PMC4331244 DOI: 10.1039/c4an01101e] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ion Mobility Spectrometry (IMS) is a widely used and 'well-known' technique of ion separation in the gaseous phase based on the differences of ion mobilities under an electric field. This technique has received increased interest over the last several decades as evidenced by the pace and advances of new IMS devices available. In this review we explore the hyphenated techniques that are used with IMS, specifically mass spectrometry as an identification approach and a multi-capillary column as a pre-separation approach. Also, we will pay special attention to the key figures of merit of the ion mobility spectrum and how data sets are treated, and the influences of the experimental parameters on both conventional drift time IMS (DTIMS) and miniaturized IMS also known as high Field Asymmetric IMS (FAIMS) in the planar configuration. The present review article is preceded by a companion review article which details the current instrumentation and contains the sections that configure both conventional DTIMS and FAIMS devices. These reviews will give the reader an insightful view of the main characteristics and aspects of the IMS technique.
Collapse
Affiliation(s)
- R Cumeras
- Institut de Microelectrònica de Barcelona, IMB-CNM (CSIC), Esfera UAB, Campus UAB s/n, E-08193 Bellaterra, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
11
|
Affiliation(s)
- Jody C. May
- Department
of Chemistry,
Center for Innovative Technology, Vanderbilt Institute for Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education , Vanderbilt University, Nashville, Tennessee 37235, United States
| | - John A. McLean
- Department
of Chemistry,
Center for Innovative Technology, Vanderbilt Institute for Chemical
Biology, Vanderbilt Institute for Integrative Biosystems Research
and Education , Vanderbilt University, Nashville, Tennessee 37235, United States
| |
Collapse
|
12
|
Abstract
A novel overtone mobility spectrometry (OMS) instrument utilizing a gridless elimination mechanism and cooperative radio frequency confinement is described. The gridless elimination region uses a set of mobility-discriminating radial electric fields that are designed so that the frequency of field application results in selective transmission and elimination of ions. To neutralize ions with mobilities that do not match the field application frequency, active elimination regions radially defocus ions toward the lens walls. Concomitantly, a lens-dependent radio frequency waveform is applied to the transmission regions of the drift tube resulting in radial confinement for mobility-matched ions. Compared with prior techniques, which use many grids for ion elimination, the new gridless configuration substantially reduces indiscriminate ion losses. A description of the apparatus and elimination process, including detailed simulations showing how ions are transmitted and eliminated is presented. A prototype 28 cm long OMS instrument is shown to have a resolving power of 20 and is capable of attomole detection limits of a model peptide (angiotensin I) spiked into a complex mixture (in this case peptides generated from digestion of β-casein with trypsin).
Collapse
Affiliation(s)
- Steven M Zucker
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States
| | | | | |
Collapse
|
13
|
Ewing MA, Zucker SM, Valentine SJ, Clemmer DE. Overtone mobility spectrometry: part 5. Simulations and analytical expressions describing overtone limits. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:615-21. [PMID: 23468094 PMCID: PMC4521626 DOI: 10.1007/s13361-012-0559-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/04/2012] [Accepted: 12/05/2012] [Indexed: 05/26/2023]
Abstract
Mathematical expressions for the analytical duty cycle associated with different overtones in overtone mobility spectrometry are derived from the widths of the transmitted packets of ions under different instrumental operating conditions. Support for these derivations is provided through ion trajectory simulations. The outcome of the theory and simulations indicates that under all operating conditions there exists a limit or maximum observable overtone that will result in ion transmission. Implications of these findings on experimental design are discussed.
Collapse
Affiliation(s)
- Michael A. Ewing
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | - Steven M. Zucker
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| | | | - David E. Clemmer
- Department of Chemistry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
14
|
Sample handling and contamination encountered when coupling offline normal phase high performance liquid chromatography fraction collection of petroleum samples to Fourier transform ion cyclotron resonance mass spectrometry. Anal Chim Acta 2012; 741:70-7. [DOI: 10.1016/j.aca.2012.06.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/26/2012] [Accepted: 06/28/2012] [Indexed: 11/19/2022]
|
15
|
Zucker SM, Lee S, Webber N, Valentine SJ, Reilly JP, Clemmer DE. An ion mobility/ion trap/photodissociation instrument for characterization of ion structure. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2011; 22:1477-85. [PMID: 21953250 DOI: 10.1007/s13361-011-0179-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 05/16/2023]
Abstract
A new instrument that combines ion mobility spectrometry (IMS) separations with tandem mass spectrometry (MS(n)) is described. Ion fragmentation is achieved with vacuum ultraviolet photodissociation (VUV PD) and/or collision-induced dissociation (CID). The instrument is comprised of an approximately 1 m long drift tube connected to a linear trap that has been interfaced to a pulsed F(2) laser (157 nm). Ion gates positioned in the front and the back of the primary drift region allow for mobility selection of specific ions prior to their storage in the ion trap, mass analysis, and fragmentation. The ion characterization advantages of the new instrument are demonstrated with the analysis of the isomeric trisaccharides, melezitose and raffinose. Mobility separation of precursor ions provides a means of separating the isomers and subsequent VUV PD generates unique fragments allowing them to be distinguished.
Collapse
Affiliation(s)
- Steven M Zucker
- Department of Chemistry, Indiana University, Bloomington, IN 47405, USA
| | | | | | | | | | | |
Collapse
|