1
|
Wang N, Dixit SM, Lee T, DeFiglia SA, Ruotolo BT, Håkansson K. Salt-Bridged Peptide Anion Gaseous Structures Enable Efficient Negative Ion Electron Capture Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:784-792. [PMID: 38489759 DOI: 10.1021/jasms.4c00030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
We previously discovered that electron attachment to gaseous peptide anions can occur within a relatively narrow electron energy range. The resulting charge-increased radical ions undergo dissociation analogous to conventional cation electron capture/transfer dissociation (ECD/ETD), thus enabling a novel tandem mass spectrometry (MS/MS) technique that we termed negative ion electron capture dissociation (niECD). We proposed that gaseous zwitterionic structures are required for niECD with electron capture either occurring at or being directed by a positively charged site. Here, we further evaluate this zwitterion mechanism by performing niECD of peptides derivatized to alter their ability to form zwitterionic gaseous structures. Introduction of a fixed positive charge tag, a highly basic guanidino group, or a highly acidic sulfonate group to promote zwitterionic structures in singly charged anions, rescued the niECD ability of a peptide refractory to niECD in its unmodified form. We also performed a systematic study of five sets of synthetic peptides with decreasing zwitterion propensity and found that niECD efficiency decreased accordingly, further supporting the zwitterion mechanism. However, traveling-wave ion mobility-mass spectrometry experiments, performed to gain further insight into the gas-phase structures of peptides showing high niECD efficiency, exhibited an inverse correlation between the orientationally averaged collision cross sections and niECD efficiency. These results indicate that compact salt-bridged structures are also a requirement for effective niECD.
Collapse
Affiliation(s)
- Ning Wang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Sugyan M Dixit
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Teresa Lee
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Steven A DeFiglia
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Kristina Håkansson
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
2
|
Wei W, Chen X, Wang X. Nanopore Sensing Technique for Studying the Hofmeister Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200921. [PMID: 35484475 DOI: 10.1002/smll.202200921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The nanopore sensing technique is an emerging method of detecting single molecules, and extensive research has gone into various fields, including nanopore sequencing and other applications of single-molecule studies. Recently, several researchers have explored the specific ion effects in nanopore channels, enabling a unique understanding of the Hofmeister effect at the single-molecule level. Herein, the recent advances of using nanopore sensing techniques are reviewed to study the Hofmeister effect and the physicochemical mechanism of this process is attempted. The challenges and goals are also discussed for the future in this field.
Collapse
Affiliation(s)
- Weichen Wei
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xiaojuan Chen
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Xuejiao Wang
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, 350007, China
| |
Collapse
|
3
|
Omae M, Ozeki Y, Kitagawa S, Ohtani H. End group analysis of poly(methylmethacrylate)s using the most abundant peak in electrospray ionization-ion mobility spectrometry-tandem mass spectrometry and Fourier transform-based noise filtering. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9176. [PMID: 34355832 DOI: 10.1002/rcm.9176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/26/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE We recently developed the characterization method for synthetic polymers weighing more than a few tens of kilodalton using electrospray ionization-ion mobility spectrometry-tandem mass spectrometry, in which the m/z value of the most abundant peak was used for characterization. However, the identification of the most abundant peak from the isotopic peaks was often difficult due to the background noise. METHODS Here, we employed a noise reduction method using Fourier transform (FT) filtering. In the power spectrum obtained using FT of the mass spectrum of the multiple charged analytes, the significant signals in the low-frequency region and at frequency z are observed for the analytes of z charges. When the signals in both regions were used for inversed FT (i.e., the signals in other regions were zero padded), a noise-filtered mass spectrum was obtained. RESULTS In the analysis of poly(methylmethacrylate)s weighing 13-17 kDa, mass spectra without noise filtering with relatively high-intensity noise (than signal) were complicated to identify the most abundant peak. On the contrary, the most abundant peak was clearly identified from the mass spectra after FT-based noise filtering, and end group composition was estimated successfully. CONCLUSIONS The proposed FT-based noise filtering for the mass spectrum is effective to characterize multiply charged synthetic polymers weighing more than a few tens of kilodalton using electrospray ionization-ion mobility spectrometry-tandem mass spectrometry.
Collapse
Affiliation(s)
- Mizuki Omae
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Yuka Ozeki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Shinya Kitagawa
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| | - Hajime Ohtani
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, Japan
| |
Collapse
|
4
|
Raab SA, El-Baba TJ, Laganowsky A, Russell DH, Valentine SJ, Clemmer DE. Protons Are Fast and Smart; Proteins Are Slow and Dumb: On the Relationship of Electrospray Ionization Charge States and Conformations. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1553-1561. [PMID: 34151568 PMCID: PMC9003666 DOI: 10.1021/jasms.1c00100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We present simple considerations of how differences in time scales of motions of protons, the lightest and fastest chemical moiety, and the much longer time scales associated with the dynamics of proteins, among the heaviest and slowest analytes, may allow many protein conformations from solution to be kinetically trapped during the process of electrospraying protein solutions into the gas phase. In solution, the quantum nature of protons leads them to change locations by tunneling, an instantaneous process; moreover, the Grotthuss mechanism suggests that these small particles can respond nearly instantaneously to the dynamic motions of proteins that occur on much longer time scales. A conformational change is accompanied by favorable or unfavorable variations in the free energy of the system, providing the impetus for solvent ↔ protein proton exchange. Thus, as thermal distributions of protein conformations interconvert, protonation states rapidly respond, as specific acidic and basic sites are exposed or protected. In the vacuum of the mass spectrometer, protons become immobilized in locations that are specific to the protein conformations from which they were incorporated. In this way, conformational states from solution are preserved upon electrospraying them into the gas phase. These ideas are consistent with the exquisite sensitivity of electrospray mass spectra to small changes of the local environment that alter protein structure in solution. We might remember this approximation for the protonation of proteins in solution with the colloquial expression-protons are fast and smart; proteins are slow and dumb.
Collapse
Affiliation(s)
- Shannon A Raab
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Tarick J El-Baba
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Stephen J Valentine
- Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| |
Collapse
|
5
|
Matveichuk YV, Stanishevskii DV. Anion-Exchange Extraction of Doubly Charged Anions by Higher Quaternary Ammonium Salts with Different Steric Accessibility of the Exchange Center. JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1134/s1061934820040097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Ventouri IK, Malheiro DBA, Voeten RLC, Kok S, Honing M, Somsen GW, Haselberg R. Probing Protein Denaturation during Size-Exclusion Chromatography Using Native Mass Spectrometry. Anal Chem 2020; 92:4292-4300. [PMID: 32107919 PMCID: PMC7081181 DOI: 10.1021/acs.analchem.9b04961] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Size-exclusion chromatography
employing aqueous mobile phases with
volatile salts at neutral pH combined with electrospray-ionization
mass spectrometry (SEC-ESI-MS) is a useful tool to study proteins
in their native state. However, whether the applied eluent conditions
actually prevent protein–stationary phase interactions, and/or
protein denaturation, often is not assessed. In this study, the effects
of volatile mobile phase additives on SEC retention and ESI of proteins
were thoroughly investigated. Myoglobin was used as the main model
protein, and eluents of varying ionic strength and pH were applied.
The degree of interaction between protein and stationary phase was
evaluated by calculating the SEC distribution coefficient. Protein-ion
charge state distributions obtained during offline and online native
ESI-MS were used to monitor alterations in protein structure. Interestingly,
most of the supposedly mild eluent compositions induced nonideal SEC
behavior and/or protein unfolding. SEC experiments revealed that the
nature, ionic strength, and pH of the eluent affected protein retention.
Protein–stationary phase interactions were effectively avoided
using ammonium acetate at ionic strengths above 0.1 M. Direct-infusion
ESI-MS showed that the tested volatile eluent salts seem to follow
the Hofmeister series: no denaturation was induced using ammonium
acetate (kosmotropic), whereas ammonium formate and bicarbonate (both
chaotropic) caused structural changes. Using a mobile phase of 0.2
M ammonium acetate (pH 6.9), several proteins (i.e., myoglobin, carbonic
anhydrase, and cytochrome c) could be analyzed by SEC-ESI-MS using
different column chemistries without compromising their native state.
Overall, with SEC-ESI-MS, the effect of nonspecific interactions between
protein and stationary phase on the protein structure can be studied,
even revealing gradual structural differences along a peak.
Collapse
Affiliation(s)
- Iro K Ventouri
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands.,Analytical Chemistry Group, van't Hoff Institute for Molecular Sciences, University of Amsterdam, PO Box 94720, 1090 GE Amsterdam, The Netherlands
| | - Daniel B A Malheiro
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands
| | - Robert L C Voeten
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands.,TI-COAST, 1098 XH Amsterdam, The Netherlands
| | - Sander Kok
- DSM Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Maarten Honing
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,DSM Materials Science Center, 6167 RD Geleen, The Netherlands
| | - Govert W Somsen
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands
| | - Rob Haselberg
- Division of Bioanalytical Chemistry, AIMMS Amsterdam Institute of Molecular and Life Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands.,Centre for Analytical Sciences Amsterdam, 1098XH Amsterdam, The Netherlands
| |
Collapse
|
7
|
Veale CGL, Mateos Jimenez M, Mackay CL, Clarke DJ. Native ion mobility mass spectrometry reveals that small organic acid fragments impart gas-phase stability to carbonic anhydrase II. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8570. [PMID: 31479545 DOI: 10.1002/rcm.8570] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/25/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE A key element of studies that utilise ion mobility mass spectrometry (IM-MS) under native electrospray conditions for the analysis of protein-ligand binding is the maintenance of the native conformation of a protein during the removal of bulk solvent. Ruotolo and co-workers have demonstrated that the binding and subsequent dissociation of the anionic component of inorganic salts stabilise native protein conformations in the gas phase. In this study, we investigated the effect that organic acid fragments identified from a fragment-based drug discovery (FBDD) campaign might have on the gas-phase stability of carbonic anhydrase II (CA II). METHODS We utilised native IM-MS to monitor changes in the conformation of CA II in the absence and presence of four acidic fragments. By performing a series of collision-induced unfolding (CIU) experiments we determined the effect of fragment binding on the gas-phase stability of CA II. RESULTS Binding and dissociation of acidic fragments result in increased gas-phase stability of CA II. CFU experiments revealed that the native-like compact gas-phase conformation of the protein is stable with higher degree of pre-activation when bound to a series of acidic fragments. Importantly, although acetate was present in high concentrations, the stabilising effect was not observed without the addition of the acidic fragments. CONCLUSIONS Binding and subsequent dissociation of acidic fragments from CA II significantly delayed CIU in a manner which is probably analogous to the effect of inorganic anions. Furthermore, we saw a slightly altered stabilising effect between the different fragments investigated in this study. This suggests that the prevention of CIU by organic acids may be tuneable to specific properties of a bound ligand. These observations may open avenues to exploit IM-MS as a screening platform in FBDD.
Collapse
Affiliation(s)
- Clinton G L Veale
- School of Chemistry and Physics, Pietermaritzburg Campus, University of KwaZulu-Natal, Private Bag X01, Scottsville, 3209, South Africa
| | - Maria Mateos Jimenez
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - C Logan Mackay
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| | - David J Clarke
- EaStCHEM School of Chemistry, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK
| |
Collapse
|
8
|
Xia Z, DeGrandchamp JB, Williams ER. Native mass spectrometry beyond ammonium acetate: effects of nonvolatile salts on protein stability and structure. Analyst 2019; 144:2565-2573. [DOI: 10.1039/c9an00266a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Structures and stabilities of proteins investigated with native mass spectrometry can be affected by nonvolatile salts, including Tris buffer, in solution.
Collapse
Affiliation(s)
- Zijie Xia
- Department of Chemistry
- University of California
- Berkeley
- USA
| | | | | |
Collapse
|
9
|
Ozeki Y, Omae M, Kitagawa S, Ohtani H. Electrospray ionization-ion mobility spectrometry-high resolution tandem mass spectrometry with collision-induced charge stripping for the analysis of highly multiply charged intact polymers. Analyst 2019; 144:3428-3435. [PMID: 31012442 DOI: 10.1039/c8an02500b] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polymers with large molecular weight are difficult to interpret using electrospray ionization-mass spectrometry (ESI-MS) due to the generation of various highly multiply charged analytes. Although ESI-ion mobility spectrometry (IMS)-MS is effective in reducing the complexity of the mass spectrum, this approach is insufficient for analyzing highly multiply charged polymers. In this study, we propose a method combining tandem mass spectrometry (quadrupole and high-resolution time-of-flight MS, QMS/TOFMS), IMS, and collision-induced charge stripping (CICS) for analyzing large intact polymers (∼40 kDa), which are highly multiply charged. The number of charges can be estimated from a Fourier transform power spectrum of a mass spectrum when the charge number is less than approximately 20. Interpretations of the spectra of poly(ethylene oxide)s (PEOs) weighing 20 kDa, poly(methyl methacrylate)s weighing 22 kDa, and methoxy-PEO-maleimide weighing 40 kDa were successfully demonstrated with isotope level and polymerization degree level separations, respectively. In the proposed method, a mixture can be analyzed for relatively small (a few kDa) and large (a few tens of kDa) polymers simultaneously without any sample pretreatment.
Collapse
Affiliation(s)
- Yuka Ozeki
- Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
| | | | | | | |
Collapse
|
10
|
Kim D, Wagner N, Wooding K, Clemmer DE, Russell DH. Ions from Solution to the Gas Phase: A Molecular Dynamics Simulation of the Structural Evolution of Substance P during Desolvation of Charged Nanodroplets Generated by Electrospray Ionization. J Am Chem Soc 2017; 139:2981-2988. [DOI: 10.1021/jacs.6b10731] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Doyong Kim
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Nicole Wagner
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kerry Wooding
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - David E. Clemmer
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Gillig KJ. Gas-phase protein conformation/multimer ion formation by electrospray ion mobility-mass spectrometry: bovine insulin and ubiquitin. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150368. [PMID: 27644980 PMCID: PMC5031634 DOI: 10.1098/rsta.2015.0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/28/2016] [Indexed: 06/06/2023]
Abstract
Ion mobility-mass spectrometry (IMMS) is a very attractive method for studies in structural biology because of the ability of rapid isolation by nearly simultaneous m/z characterization and size separation, leading to an emergence of IMMS as a complimentary biochemical tool. Earlier, we developed a method based on varying the protein concentration in solution prior to electrospray ionization (ESI) with subsequent m/z selection and dissociation of protein multimers by IMMS of cytochrome c. The focus of this work will be to correctly distinguish truly different ion conformations formed by ESI versus homomultimeric complexes with the same m/z for well-studied proteins bovine ubiquitin and insulin. These proteins were chosen due to their large difference in solution phase structures: insulin tightly bound by disulfide linkages, and ubiquitin-a protein that may adopt a range of states from compact to extended. Our preliminary results, as with cytochrome c reveal false negatives for protein oligomer formation and false positives for protein conformational states. In addition, these results will be couched in terms of the need for quantification of IMMS analysis of proteins given the total area under IMMS peaks can also distinguish conformation versus aggregation as higher order oligomers have more mass per ion.This article is part of the themed issue 'Quantitative mass spectrometry'.
Collapse
Affiliation(s)
- Kent J Gillig
- Genomics Research Center, Academia Sinica, 128 Academia Road, Nangang Section 2, Taipei 115, Taiwan, Republic of China
| |
Collapse
|
12
|
Schennach M, Schneeberger EM, Breuker K. Unfolding and Folding of the Three-Helix Bundle Protein KIX in the Absence of Solvent. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2016; 27:1079-88. [PMID: 26936183 PMCID: PMC4863917 DOI: 10.1007/s13361-016-1363-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 05/11/2023]
Abstract
Electron capture dissociation was used to probe the structure, unfolding, and folding of KIX ions in the gas phase. At energies for vibrational activation that were sufficiently high to cause loss of small molecules such as NH3 and H2O by breaking of covalent bonds in about 5% of the KIX (M + nH)(n+) ions with n = 7-9, only partial unfolding was observed, consistent with our previous hypothesis that salt bridges play an important role in stabilizing the native solution fold after transfer into the gas phase. Folding of the partially unfolded ions on a timescale of up to 10 s was observed only for (M + nH)(n+) ions with n = 9, but not n = 7 and n = 8, which we attribute to differences in the distribution of charges within the (M + nH)(n+) ions. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Moritz Schennach
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Eva-Maria Schneeberger
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria
| | - Kathrin Breuker
- Institute of Organic Chemistry and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80/82, 6020, Innsbruck, Austria.
| |
Collapse
|
13
|
Wagner ND, Kim D, Russell DH. Increasing Ubiquitin Ion Resistance to Unfolding in the Gas Phase Using Chloride Adduction: Preserving More "Native-Like" Conformations Despite Collisional Activation. Anal Chem 2016; 88:5934-40. [PMID: 27137645 DOI: 10.1021/acs.analchem.6b00871] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Electrospray ionization (ESI) of ubiquitin from acidified (0.1%) aqueous solution produces abundant ubiquitin-chloride adduct ions, [M + nH + xCl]((n - x)+), that upon mild heating react via elimination of neutral HCl. Ion mobility collision cross section (CCS) measurements show that ubiquitin ions retaining chloride adducts exhibit CCS values similar to those of the "native-state" of the protein. Coupled with results from recent molecular dynamics (MD) simulations for the evolution of a salt-containing electrospray droplet, this study provides a more complete picture for how the presence of salts affects the evolution of protein conformers in the final stages of dehydration of the ESI process and within the instrument.
Collapse
Affiliation(s)
- Nicole D Wagner
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - Doyong Kim
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| | - David H Russell
- Department of Chemistry, Texas A&M University , College Station, Texas 77843, United States
| |
Collapse
|
14
|
Hamid AM, Ibrahim YM, Garimella SVB, Webb IK, Deng L, Chen TC, Anderson GA, Prost SA, Norheim RV, Tolmachev AV, Smith RD. Characterization of Traveling Wave Ion Mobility Separations in Structures for Lossless Ion Manipulations. Anal Chem 2015; 87:11301-8. [PMID: 26510005 DOI: 10.1021/acs.analchem.5b02481] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report on the development and characterization of a traveling wave (TW)-based Structures for Lossless Ion Manipulations (TW-SLIM) module for ion mobility separations (IMS). The TW-SLIM module uses parallel arrays of rf electrodes on two closely spaced surfaces for ion confinement, where the rf electrodes are separated by arrays of short electrodes, and using these TWs can be created to drive ion motion. In this initial work, TWs are created by the dynamic application of dc potentials. The capabilities of the TW-SLIM module for efficient ion confinement, lossless ion transport, and ion mobility separations at different rf and TW parameters are reported. The TW-SLIM module is shown to transmit a wide mass range of ions (m/z 200-2500) utilizing a confining rf waveform (∼1 MHz and ∼300 Vp-p) and low TW amplitudes (<20 V). Additionally, the short TW-SLIM module achieved resolutions comparable to existing commercially available low pressure IMS platforms and an ion mobility peak capacity of ∼32 for TW speeds of <210 m/s. TW-SLIM performance was characterized over a wide range of rf and TW parameters and demonstrated robust performance. The combined attributes of the flexible design and low voltage requirements for the TW-SLIM module provide a basis for devices capable of much higher resolution and more complex ion manipulations.
Collapse
Affiliation(s)
- Ahmed M Hamid
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Yehia M Ibrahim
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Sandilya V B Garimella
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Ian K Webb
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Liulin Deng
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Tsung-Chi Chen
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Gordon A Anderson
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Spencer A Prost
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Randolph V Norheim
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Aleksey V Tolmachev
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory , Richland, Washington 99352, United States
| |
Collapse
|
15
|
Lee JW, Kim HI. Investigating acid-induced structural transitions of lysozyme in an electrospray ionization source. Analyst 2015; 140:661-9. [PMID: 25429398 DOI: 10.1039/c4an01794c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The effect of acids on the structure of lysozyme (Lyz) during electrospray ionization (ESI) was studied by comparing the solution and gas-phase structures of Lyz. Investigation using circular dichroism spectroscopy and small-angle X-ray scattering demonstrated that the folded conformation of Lyz was maintained in pH 2.2 solutions containing different acids. On the other hand, analysis of the charge state distributions and ion mobility (IM) distributions, combined with molecular dynamics simulations, demonstrated that the gas phase structures of Lyz depend on the pKa of the acid used to acidify the protein solution. Formic acid and acetic acid, which are weak acids (pKa > 3.5), induce unfolding of Lyz during ESI, presumably because the undissociated weak acids provide protons to maintain the acidic groups within Lyz protonated and prevent the formation of salt bridges. However, HCl suppressed the formation of the unfolded conformers because the acid is already dissociated in solution, and chloride anions within the ESI droplet can interact with Lyz to reduce the intramolecular electrostatic repulsion. These trends in the IM distributions are observed for all charge states, demonstrating the significance of the acid effect on the structure of Lyz during ESI.
Collapse
Affiliation(s)
- Jong Wha Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 790-784, South Korea.
| | | |
Collapse
|
16
|
Gavriilidou AFM, Gülbakan B, Zenobi R. Influence of Ammonium Acetate Concentration on Receptor–Ligand Binding Affinities Measured by Native Nano ESI-MS: A Systematic Study. Anal Chem 2015; 87:10378-84. [DOI: 10.1021/acs.analchem.5b02478] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Agni F. M. Gavriilidou
- ETH Zurich, Department of Chemistry and Applied
Biosciences, CH-8093 Zurich, Switzerland
| | - Basri Gülbakan
- Institute
of Child Health, Division of Pediatric Basic Sciences, Hacettepe University, 06100 Ankara, Turkey
| | - Renato Zenobi
- ETH Zurich, Department of Chemistry and Applied
Biosciences, CH-8093 Zurich, Switzerland
| |
Collapse
|
17
|
Samet M, Danesh-Yazdi M, Fattahi A, Kass SR. Power of a remote hydrogen bond donor: anion recognition and structural consequences revealed by IR spectroscopy. J Org Chem 2015; 80:1130-5. [PMID: 25490049 DOI: 10.1021/jo502652z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Natural and synthetic anion receptors are extensively employed, but the structures of their bound complexes are difficult to determine in the liquid phase. Infrared spectroscopy is used in this work to characterize the solution structures of bound anion receptors for the first time, and surprisingly only two of three hydroxyl groups of the neutral aliphatic triols are found to directly interact with Cl(–). The binding constants of these triols with zero to three CF3 groups were measured in a polar environment, and KCD3CN(Cl(–)) = 1.1 × 10(6) M(–1) for the tris(trifluoromethyl) derivative. This is a remarkably large value, and high selectivity with respect to interfering anions such as, Br(–), NO3(–) and NCS(–) is also displayed. The effects of the third “noninteracting” hydroxyl groups on the structures and binding constants were also explored, and surprisingly they are as large or larger than the OH substituents that hydrogen bond to Cl(–). That is, a remote hydroxyl group can play a larger role in binding than two OH substituents that directly interact with an anionic center.
Collapse
|
18
|
Nonose S, Yamashita K, Okamura T, Fukase S, Kawashima M, Sudo A, Isono H. Conformations of disulfide-intact and -reduced lysozyme ions probed by proton-transfer reactions at various temperatures. J Phys Chem B 2014; 118:9651-61. [PMID: 25046209 DOI: 10.1021/jp505621f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Proton-transfer reactions of disulfide-intact and -reduced lysozyme ions (7+ through 14+) to 2,6-dimethylpyridine were examined in the gas phase using tandem mass spectrometry with electrospray ionization. By changing temperature of a collision cell from 280 to 460 K, temperature dependence of reaction rate constants and branching fractions was measured. Absolute reaction rate constants for the protein ions of specific charge states were determined from intensities of parent and product ions in the mass spectra. Remarkable change was observed for the rate constants and distribution of product ions. The rate constants for disulfide-intact ions changed more drastically with change of charge states and temperature than those for disulfide-reduced ions. Observed branching fractions for parent and product ions were represented by calculated reaction rate constants with a scheme of sequential process. The reaction rate constants are closely related to conformation changes with change of temperature, which are profoundly influenced by amputation of disulfide bonds.
Collapse
Affiliation(s)
- Shinji Nonose
- Graduate School of Nanobioscience, Yokohama City University , Yokohama, Japan
| | | | | | | | | | | | | |
Collapse
|
19
|
Susa AC, Mortensen DN, Williams ER. Effects of cations on protein and peptide charging in electrospray ionization from aqueous solutions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2014; 25:918-27. [PMID: 24729190 PMCID: PMC4051497 DOI: 10.1007/s13361-014-0864-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/12/2014] [Accepted: 02/18/2014] [Indexed: 05/11/2023]
Abstract
The effects of eight different cations with ionic radii between 69 and 337 pm on the charging of peptides and proteins with electrospray ionization from aqueous acetate salt solutions are reported. Significant adduction occurs for all cations except NH4(+), and the average protein charge is lower when formed from solutions containing salts compared with solutions without salts added. Circular dichroism and ion mobility results show the protein conformations are different in pure water compared with salt solutions, which likely affects the extent of charging. The average charge of protein and peptide ions formed from solutions with Li(+) and Cs(+), which have Gibbs solvation free energies (GSFEs) that differ by 225 kJ/mol, is similar. Lower charge states are typically formed from solutions with tetramethylammonium and tetraethylammonium that have lower GSFE values. Loss of the larger cations that have the lowest GSFEs is facile when adducted protein ions are collisionally activated, resulting in the formation of lower analyte charge states. This reaction pathway provides a route to produce abundant singly protonated protein ions under native mass spectrometry conditions. The average protein and peptide charge with NH4(+) is nearly the same as that with Rb(+) and K(+), cations with similar GSFE and ionic radii. This indicates that proton transfer from NH4(+) to proteins plays an insignificant role in the extent of protein charging in native mass spectrometry.
Collapse
Affiliation(s)
| | | | - Evan R. Williams
- Address correspondence to Prof. Evan R. Williams: Department of Chemistry, University of California, Berkeley, B42 Hildebrand Hall Berkeley, CA 94720, Phone: (510) 643-7161,
| |
Collapse
|
20
|
Liu X, Tabet JC, Cole RB. Evidence for ion-ion interactions between peptides and anions (HSO₄⁻ or ClO₄⁻) derived from high-acidity acids. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:490-497. [PMID: 24913401 DOI: 10.1002/jms.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 03/08/2014] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
The existence of gas-phase electrostatic ion-ion interactions between protonated sites on peptides ([Glu] Fibrinopeptide B, Angiotensin I and [Asn(1), Val(5)]-Angiotensin II) and attaching anions (ClO4(-) and HSO4(-)) derived from strong inorganic acids has been confirmed by CID MS/MS. Evidence for ion-ion interactions comes especially from the product ions formed during the first dissociation step, where, in addition to the expected loss of the anion or neutral acid, other product ions are also observed that require covalent bond cleavage (i.e. H2O loss when several carboxylate groups are present, or NH3 loss when only one carboxylate group is present). For [[Glu] Fibrinopeptide B + HSO4](-), under CID, H2O water loss was found to require less energy than H2SO4 departure. This indicates that the interaction between HSO4(-) and the peptide is stronger than the covalent bond holding the hydroxyl group, and must be an ion-ion interaction. The strength and stability of this type of ion-pairing interaction are highly dependent on the accessibility of additional mobile charges to the site. Positive mobile charges such as protons from the peptide can be transferred to the attaching anion to possibly form a neutral that may depart from the complex. Alternatively, an ion-ion interaction can be disrupted by a competing proximal additional negatively charged site of the peptide that can potentially form a salt bridge with the positively charged site and thereby facilitate the attaching anion's departure.
Collapse
Affiliation(s)
- Xiaohua Liu
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Dr., New Orleans, LA, 70148, USA
| | | | | |
Collapse
|
21
|
Cassou CA, Williams ER. Anions in electrothermal supercharging of proteins with electrospray ionization follow a reverse Hofmeister series. Anal Chem 2014; 86:1640-7. [PMID: 24410546 PMCID: PMC3983018 DOI: 10.1021/ac403398j] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
![]()
The
effects of different anions on the extent of electrothermal
supercharging of proteins from aqueous ammonium and sodium salt solutions
were investigated. Sulfate and hydrogen phosphate are the most effective
anions at producing high charge state protein ions from buffered aqueous
solution, whereas iodide and perchlorate are ineffective with electrothermal
supercharging. The propensity for these anions to produce high charge
state protein ions follows the following trend: sulfate > hydrogen
phosphate > thiocyanate > bicarbonate > chloride > formate
≈
bromide > acetate > iodide > perchlorate. This trend correlates
with
the reverse Hofmeister series over a wide range of salt concentrations
(1 mM to 2 M) and with several physical properties, including solvent
surface tension, anion viscosity B-coefficient, and anion surface/bulk
partitioning coefficient, all of which are related to the Hofmeister
series. The effectiveness of electrothermal supercharging does not
depend on bubble formation, either from thermal degradation of the
buffer or from coalescence of dissolved gas. These results provide
evidence that the effect of different ions in the formation of high
charge state ions by electrothermal supercharging is largely a result
of Hofmeister effects on protein stability leading to protein unfolding
in the heated ESI droplet.
Collapse
Affiliation(s)
- Catherine A Cassou
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | | |
Collapse
|
22
|
Vonderach M, Winghart MO, MacAleese L, Chirot F, Antoine R, Dugourd P, Weis P, Hampe O, Kappes MM. Conformer-selective photoelectron spectroscopy of α-lactalbumin derived multianions in the gas phase. Phys Chem Chem Phys 2014; 16:3007-13. [DOI: 10.1039/c3cp54596b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Flick TG, Merenbloom SI, Williams ER. Effects of metal ion adduction on the gas-phase conformations of protein ions. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2013; 24:1654-62. [PMID: 23733259 PMCID: PMC3795793 DOI: 10.1007/s13361-013-0664-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/10/2013] [Accepted: 05/03/2013] [Indexed: 05/16/2023]
Abstract
Changes in protein ion conformation as a result of nonspecific adduction of metal ions to the protein during electrospray ionization (ESI) from aqueous solutions were investigated using traveling wave ion mobility spectrometry (TWIMS). For all proteins examined, protein cations (and in most cases anions) with nonspecific metal ion adducts are more compact than the fully protonated (or deprotonated) ions with the same charge state. Compaction of protein cations upon nonspecific metal ion binding is most significant for intermediate charge state ions, and there is a greater reduction in collisional cross section with increasing number of metal ion adducts and increasing ion valency, consistent with an electrostatic interaction between the ions and the protein. Protein cations with the greatest number of adducted metal ions are no more compact than the lowest protonated ions formed from aqueous solutions. These results show that smaller collisional cross sections for metal-attached protein ions are not a good indicator of a specific metal-protein interaction in solution because nonspecific metal ion adduction also results in smaller gaseous protein cation cross sections. In contrast, the collisional cross section of α-lactalbumin, which specifically binds one Ca(2+), is larger for the holo-form compared with the apo-form, in agreement with solution-phase measurements. Because compaction of protein cations occurs when metal ion adduction is nonspecific, elongation of a protein cation may be a more reliable indicator that a specific metal ion-protein interaction occurs in solution.
Collapse
Affiliation(s)
| | | | - Evan R. Williams
- Address reprint requests to Prof. Evan R. Williams: Department of Chemistry University of California, Berkeley Latimer Hall #1460 Berkeley, CA 94620-1460 Phone: (510) 643-7161 Fax: (510) 542-7714
| |
Collapse
|
24
|
Han L, Ruotolo BT. Hofmeister Salts Recover a Misfolded Multiprotein Complex for Subsequent Structural Measurements in the Gas Phase. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201301893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
25
|
Han L, Ruotolo BT. Hofmeister salts recover a misfolded multiprotein complex for subsequent structural measurements in the gas phase. Angew Chem Int Ed Engl 2013; 52:8329-32. [PMID: 23818426 DOI: 10.1002/anie.201301893] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/26/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Linjie Han
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | | |
Collapse
|
26
|
Schmidt J, Kass SR. Zwitterion vs Neutral Structures of Amino Acids Stabilized by a Negatively Charged Site: Infrared Photodissociation and Computations of Proline–Chloride Anion. J Phys Chem A 2013; 117:4863-9. [DOI: 10.1021/jp402267c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Jacob Schmidt
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven R. Kass
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Han L, Ruotolo BT. Traveling-wave Ion Mobility-Mass Spectrometry Reveals Additional Mechanistic Details in the Stabilization of Protein Complex Ions through Tuned Salt Additives. ACTA ACUST UNITED AC 2013; 16:41-50. [PMID: 23539363 DOI: 10.1007/s12127-013-0121-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ion mobility-mass spectrometry is often applied to the structural elucidation of multiprotein assemblies in cases where X-ray crystallography or NMR experiments have proved challenging. Such applications are growing steadily as we continue to probe regions of the proteome that are less-accessible to such high-resolution structural biology tools. Since ion mobility measures protein structure in the absence of bulk solvent, strategies designed to more-broadly stabilize native-like protein structures in the gas-phase would greatly enable the application of such measurements to challenging structural targets. Recently, we have begun investigating the ability of salt-based solution additives that remain bound to protein ions in the gas-phase to stabilize native-like protein structures. These experiments, which utilize collision induced unfolding and collision induced dissociation in a tandem mass spectrometry mode to measure protein stability, seek to develop a rank-order similar to the Hofmeister series that categorizes the general ability of different anions and cations to stabilize gas-phase protein structure. Here, we study magnesium chloride as a potential stabilizing additive for protein structures in vacuo, and find that the addition of this salt to solutions prior to nano-electrospray ionization dramatically enhances multiprotein complex structural stability in the gas-phase. Based on these experiments, we also refine the physical mechanism of cation-based protein complex ion stabilization by tracking the unfolding transitions experienced by cation-bound complexes. Upon comparison with unbound proteins, we find strong evidence that stabilizing cations act to tether protein complex structure. We conclude by putting the results reported here in context, and by projecting the future applications of this method.
Collapse
Affiliation(s)
- Linjie Han
- University of Michigan, Department of Chemistry, 930 N. University Ave., Ann Arbor, MI, 48108
| | | |
Collapse
|
28
|
Han L, Hyung SJ, Ruotolo BT. Dramatically stabilizing multiprotein complex structure in the absence of bulk water using tuned Hofmeister salts. Faraday Discuss 2013; 160:371-88; discussion 389-403. [PMID: 23795511 PMCID: PMC3695445 DOI: 10.1039/c2fd20099f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures
Collapse
Affiliation(s)
- Linjie Han
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - Suk-Joon Hyung
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| | - Brandon T. Ruotolo
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109
| |
Collapse
|
29
|
Flick TG, Cassou CA, Chang TM, Williams ER. Solution additives that desalt protein ions in native mass spectrometry. Anal Chem 2012; 84:7511-7. [PMID: 22881839 PMCID: PMC3433631 DOI: 10.1021/ac301629s] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The presence of many salts, such as sodium chloride, can adversely affect the performance of native electrospray ionization mass spectrometry for the analysis of proteins and protein complexes by reducing the overall molecular ion abundances and distributing signal for any given charge state into many cationized forms with various numbers of adducts attached. Several solution additives, such as ammonium bromide, ammonium iodide, and NaSbF(6), can significantly lower the extent of sodium ion adduction to the molecular ions of proteins and protein complexes. For ubiquitin, addition of 25 mM ammonium bromide or ammonium iodide into aqueous solutions also containing 1.0 mM NaCl results in a factor of 72 and 56 increase, respectively, in the relative abundances of the fully protonated molecular ions compared to when these additives are not present. The effectiveness of this method for reducing sodium ion adduction is related to the low proton affinity (PA) values of the anions. Anions with very low PA also have a propensity to adduct as an acid molecule, but these adducts can be readily dissociated from the molecular ions either by activation in the source or subsequently by collisional activation in the mass spectrometer. This method of reducing sodium ion adduction to proteins is simple and requires no experimental modifications, making it an attractive alternative to other methods for desalting proteins prior to mass spectrometry analysis.
Collapse
Affiliation(s)
- Tawnya G. Flick
- Department of Chemistry, University of California, Berkeley, CA 94720-1460
| | | | - Terrence M. Chang
- Department of Chemistry, University of California, Berkeley, CA 94720-1460
| | - Evan R. Williams
- Department of Chemistry, University of California, Berkeley, CA 94720-1460
| |
Collapse
|
30
|
Han L, Hyung SJ, Ruotolo BT. Bound cations significantly stabilize the structure of multiprotein complexes in the gas phase. Angew Chem Int Ed Engl 2012; 51:5692-5. [PMID: 22529039 DOI: 10.1002/anie.201109127] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Revised: 03/13/2012] [Indexed: 12/20/2022]
Affiliation(s)
- Linjie Han
- Department of Chemistry, University of Michigan, 930 N. University Ave., Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
31
|
Han L, Hyung SJ, Ruotolo BT. Bound Cations Significantly Stabilize the Structure of Multiprotein Complexes in the Gas Phase. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201109127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Merenbloom SI, Flick TG, Williams ER. How hot are your ions in TWAVE ion mobility spectrometry? JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2012; 23:553-62. [PMID: 22203576 PMCID: PMC3296450 DOI: 10.1007/s13361-011-0313-7] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 11/30/2011] [Accepted: 12/02/2011] [Indexed: 05/04/2023]
Abstract
Effective temperatures of ions during traveling wave ion mobility spectrometry (TWIMS) analysis were measured using singly protonated leucine enkephalin dimer as a chemical thermometer by monitoring dissociation of the dimer into monomer, as well as the subsequent dissociation of monomer into a-, b-, and y-ions, as a function of instrumental parameters. At fixed helium cell and TWIMS cell gas flow rates, the extent of dissociation does not vary significantly with either the wave velocity or wave height, except at low (<500 m/s) wave velocities that are not commonly used. Increasing the flow rate of nitrogen gas into the TWIMS cell and decreasing the flow rate of helium gas into the helium cell resulted in greater dissociation. However, the mobility distributions of the fragment ions formed by dissociation of the dimer upon injection into the TWIMS cell are nearly indistinguishable from those of fragment ions formed in the collision cell prior to TWIMS analysis for all TWIMS experiments. These results indicate that heating and dissociation occur when ions are injected into the TWIMS cell, and that the effective temperature subsequently decreases to a point at which no further dissociation is observed during the TWIMS analysis. An upper limit to the effective ion temperature of 449 K during TWIMS analysis is obtained at a helium flow rate of 180 mL/min, TWIMS flow rate of 80 mL/min, and traveling wave height of 40 V, which is well below previously reported values. Effects of ion heating in TWIMS on gas-phase protein conformation are presented.
Collapse
Affiliation(s)
- Samuel I Merenbloom
- Department of Chemistry, University of California, Berkeley, CA 94720-1460, USA
| | | | | |
Collapse
|
33
|
Gas-phase protein assemblies: Unfolding landscapes and preserving native-like structures using noncovalent adducts. Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.11.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|