1
|
Samgina TY, Vasileva ID, Zubarev RA, Lebedev AT. EThcD as a Unique Tool for the Top-Down De Novo Sequencing of Intact Natural Ranid Amphibian Peptides. Anal Chem 2024; 96:12057-12064. [PMID: 38979842 DOI: 10.1021/acs.analchem.4c02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
De novo sequencing of any novel peptide/protein is a difficult task. Full sequence coverage, isomeric amino acid residues, inter- and intramolecular S-S bonds, and numerous other post-translational modifications make the investigators employ various chemical modifications, providing a variety of specific fragmentation MSn patterns. The chemical processes are time-consuming, and their yields never reach 100%, while the subsequent purification often leads to the loss of minor components of the initial peptide mixture. Here, we present the advantages of the EThcD method that enables establishing the full sequence of natural intact peptides of ranid frogs in de novo top-down mode without any chemical modifications. The method provides complete sequence coverage, including the cyclic disulfide section, and reliable identification of isomeric leucine/isoleucine residues. The proposed approach demonstrated its efficiency in the analysis of peptidomes of ranid frogs from several populations of Rana arvalis, Rana temporaria, and Pelophylax esculentus complexes.
Collapse
Affiliation(s)
- Tatiana Yu Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina D Vasileva
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Roman A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, Stockholm 17177, Sweden
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya St., Moscow 117198, Russia
| | - Albert T Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
2
|
Schrader M. Origins, Technological Advancement, and Applications of Peptidomics. Methods Mol Biol 2024; 2758:3-47. [PMID: 38549006 DOI: 10.1007/978-1-0716-3646-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources instead of heading for a few single peptides in former peptide research. Mass spectrometry allows to detect a multitude of peptides in complex mixtures and thus enables new strategies leading to peptidomics. The term was established in the year 2001, and up to now, this new field has grown to over 3000 publications. Analytical techniques originally developed for fast and comprehensive analysis of peptides in proteomics were specifically adjusted for peptidomics. Although it is thus closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. Fundamental technological advancements of peptidomics since have occurred in mass spectrometry and data processing, including quantification, and more slightly in separation technology. Different strategies and diverse sources of peptidomes are mentioned by numerous applications, such as discovery of neuropeptides and other bioactive peptides, including the use of biochemical assays. Furthermore, food and plant peptidomics are introduced similarly. Additionally, applications with a clinical focus are included, comprising biomarker discovery as well as immunopeptidomics. This overview extensively reviews recent methods, strategies, and applications including links to all other chapters of this book.
Collapse
Affiliation(s)
- Michael Schrader
- Department of Bioengineering Sciences, Weihenstephan-Tr. University of Applied Sciences, Freising, Germany.
| |
Collapse
|
3
|
Vasileva ID, Samgina TY, Meng Z, Zubarev RA, Lebedev AT. EThcD Benefits for the Sequencing Inside Intramolecular Disulfide Cycles of Amphibian Intact Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1979-1988. [PMID: 37525119 DOI: 10.1021/jasms.3c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Disulfide bonds formed by a pair of cysteine residues in the peptides' backbone represent a certain problem for their sequencing by means of mass spectrometry. As a rule, in proteomics, disulfide bonds should be cleaved before the analysis followed by some sort of chemical derivatization. That step is time-consuming and may lead to losses of minor peptides of the analyzed mixtures due to incomplete reaction, adsorption on the walls of the vials, etc. Certain problems in the de novo top-down sequencing of amphibian skin peptides are caused by the C-terminal disulfide loop, called the Rana box. Its reduction with or without subsequent derivatization was considered to be an unavoidable step before mass spectrometry. In the present study, EThcD demonstrated its efficiency in sequencing intact disulfide-containing peptides without any preliminary derivatization. Applied to the secretion of three frog species, EThcD provided the full sequence inside the intramolecular disulfide cycle for all S-S-containing peptides found in the samples, with the only exception being diarginine species. Proteolytic fragments, which are shorter than the original peptides, were helpful in some cases. HCD should be mentioned as a complementary tool to the EThcD tool, being useful as a confirmation method for some sequence details.
Collapse
Affiliation(s)
- Irina D Vasileva
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| | - Tatiana Yu Samgina
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| | - Zhaowei Meng
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Roman A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Albert T Lebedev
- Lomonosov Moscow State University, Department of Organic Chemistry, 119991 Moscow, Russia
| |
Collapse
|
4
|
Tolpina MD, Vasileva ID, Samgina TY. Modern Approaches in de novo Sequencing of Nontryptic Peptides of Ranid and Hylid Frogs by Means of Mass Spectrometry: A Review. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822130081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Lebedev AT, Vasileva ID, Samgina TY. FT-MS in the de novo top-down sequencing of natural nontryptic peptides. MASS SPECTROMETRY REVIEWS 2022; 41:284-313. [PMID: 33347655 DOI: 10.1002/mas.21678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The present review covers available results on the application of FT-MS for the de novo sequencing of natural peptides of various animals: cones, bees, snakes, amphibians, scorpions, and so forth. As these peptides are usually bioactive, the animals efficiently use them as a weapon against microorganisms or higher animals including predators. These peptides represent definite interest as drugs of future generations since the mechanism of their activity is completely different in comparison with that of the modern antibiotics. Utilization of those peptides as antibiotics can eliminate the problem of the bacterial resistance development. Sequence elucidation of these bioactive peptides becomes even more challenging when the species genome is not available and little is known about the protein origin and other properties of those peptides in the study. De novo sequencing may be the only option to obtain sequence information. The benefits of FT-MS for the top-down peptide sequencing, the general approaches of the de novxxo sequencing, the difficult cases involving sequence coverage, isobaric and isomeric amino acids, cyclization of short peptides, the presence of posttranslational modifications will be discussed in the review.
Collapse
Affiliation(s)
- Albert T Lebedev
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Irina D Vasileva
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Y Samgina
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
6
|
Claesen J, Valkenborg D, Burzykowski T. Predicting the number of sulfur atoms in peptides and small proteins based on the observed aggregated isotope distribution. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9162. [PMID: 34240492 PMCID: PMC8459233 DOI: 10.1002/rcm.9162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 07/06/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
RATIONALE Identification of peptides and proteins is a challenging task in mass spectrometry-based proteomics. Knowledge of the number of sulfur atoms can improve the identification of peptides and proteins. METHODS In this article, we propose a method for the prediction of S-atoms based on the aggregated isotope distribution. The Mahalanobis distance is used as dissimilarity measure to compare mass- and intensity-based features from the observed and theoretical isotope distributions. RESULTS The relative abundance of the second and the third aggregated isotopic variants (as compared to the monoisotopic one) and the mass difference between the second and third aggregated isotopic variants are the most important features to predict the number of S-atoms. CONCLUSIONS The mass and intensity accuracies of the observed aggregated isotopic variants are insufficient to accurately predict the number of atoms. However, using a limited set of predictions for a peptide, rather than predicting a single number of S-atoms, has a reasonably high prediction accuracy.
Collapse
Affiliation(s)
- Jürgen Claesen
- Department of Epidemiology and Data Science, Amsterdam UMCVU University AmsterdamAmsterdamThe Netherlands
- Microbiology UnitSCK‐CENMolBelgium
- I‐Biostat, Data Science InstituteHasselt UniversityHasseltBelgium
| | - Dirk Valkenborg
- I‐Biostat, Data Science InstituteHasselt UniversityHasseltBelgium
| | - Tomasz Burzykowski
- I‐Biostat, Data Science InstituteHasselt UniversityHasseltBelgium
- Department of Statistics and Medical InformaticsMedical University of BialystokBialystokPoland
| |
Collapse
|
7
|
High-Accuracy Mass Spectrometry Based Screening Method for the Discovery of Cysteine Containing Peptides in Animal Venoms and Toxins. Methods Mol Biol 2018. [PMID: 29476522 DOI: 10.1007/978-1-4939-7537-2_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Venom and toxin samples derived from animal origins are a rich source of bioactive peptides. A high proportion of bioactive peptides that have been identified in venom contain one or more disulfide bridges, which are thought to stabilize tertiary structure, and therefore influence the peptides' specificity and activity. In this chapter, we describe a label-free mass spectrometry-based screening workflow specifically to detect peptides that contain inter- and intramolecular disulfide bonds, followed by elucidation of their primary structure. This method is based on the determination of the normalized isotope shift (NIS) and the normalized mass defect (NMD) of peptides, two parameters which are heavily influenced by the presence of sulfur in a peptide, where cysteines are the main contributing residues. Using ant defensive secretions as an example, we describe the initial fractionation of the venom on strong cation exchange followed by nanoflow HPLC and mass spectrometry. High resolution zoom scan spectra of high-abundance peptides are acquired, allowing an accurate determination of both monoisotopic and average mass, which are essential for calculation of NMD and NIS. Candidate peptides exhibiting relative low NMD and high NIS values are selected for targeted de novo sequencing. By fine-tuning the collision energy for optimal fragmentation of each selected precursor ions, the full sequence of several novel inter- and intramolecular disulfide bond containing ant defensive peptides can be established.
Collapse
|
8
|
Abstract
Peptidomics is the comprehensive characterization of peptides from biological sources mainly by HPLC and mass spectrometry. Mass spectrometry allows the detection of a multitude of single peptides in complex mixtures. The term first appeared in full papers in the year 2001, after over 100 years of peptide research with a main focus on one or a few specific peptides. Within the last 15 years, this new field has grown to over 1200 publications. Mass spectrometry techniques, in combination with other analytical methods, were developed for the fast and comprehensive analysis of peptides in proteomics and specifically adjusted to implement peptidomics technologies. Although peptidomics is closely linked to proteomics, there are fundamental differences with conventional bottom-up proteomics. The development of peptidomics is described, including the most important implementations for its technological basis. Different strategies are covered which are applied to several important applications, such as neuropeptidomics and discovery of bioactive peptides or biomarkers. This overview includes links to all other chapters in the book as well as recent developments of separation, mass spectrometric, and data processing technologies. Additionally, some new applications in food and plant peptidomics as well as immunopeptidomics are introduced.
Collapse
|
9
|
Savidor A, Barzilay R, Elinger D, Yarden Y, Lindzen M, Gabashvili A, Adiv Tal O, Levin Y. Database-independent Protein Sequencing (DiPS) Enables Full-length de Novo Protein and Antibody Sequence Determination. Mol Cell Proteomics 2017; 16:1151-1161. [PMID: 28348172 DOI: 10.1074/mcp.o116.065417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/22/2017] [Indexed: 01/16/2023] Open
Abstract
Traditional "bottom-up" proteomic approaches use proteolytic digestion, LC-MS/MS, and database searching to elucidate peptide identities and their parent proteins. Protein sequences absent from the database cannot be identified, and even if present in the database, complete sequence coverage is rarely achieved even for the most abundant proteins in the sample. Thus, sequencing of unknown proteins such as antibodies or constituents of metaproteomes remains a challenging problem. To date, there is no available method for full-length protein sequencing, independent of a reference database, in high throughput. Here, we present Database-independent Protein Sequencing, a method for unambiguous, rapid, database-independent, full-length protein sequencing. The method is a novel combination of non-enzymatic, semi-random cleavage of the protein, LC-MS/MS analysis, peptide de novo sequencing, extraction of peptide tags, and their assembly into a consensus sequence using an algorithm named "Peptide Tag Assembler." As proof-of-concept, the method was applied to samples of three known proteins representing three size classes and to a previously un-sequenced, clinically relevant monoclonal antibody. Excluding leucine/isoleucine and glutamic acid/deamidated glutamine ambiguities, end-to-end full-length de novo sequencing was achieved with 99-100% accuracy for all benchmarking proteins and the antibody light chain. Accuracy of the sequenced antibody heavy chain, including the entire variable region, was also 100%, but there was a 23-residue gap in the constant region sequence.
Collapse
Affiliation(s)
- Alon Savidor
- From ‡The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot
| | - Rotem Barzilay
- From ‡The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot
| | - Dalia Elinger
- From ‡The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot
| | - Yosef Yarden
- the §Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Moshit Lindzen
- the §Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel 76100
| | - Alexandra Gabashvili
- From ‡The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot
| | - Ophir Adiv Tal
- From ‡The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot
| | - Yishai Levin
- From ‡The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot;
| |
Collapse
|
10
|
van Oosten LN, Pieterse M, Pinkse MWH, Verhaert PDEM. Screening Method for the Discovery of Potential Bioactive Cysteine-Containing Peptides Using 3D Mass Mapping. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:2039-2050. [PMID: 26552389 PMCID: PMC4654750 DOI: 10.1007/s13361-015-1282-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 09/18/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
Animal venoms and toxins are a valuable source of bioactive peptides with pharmacologic relevance as potential drug leads. A large subset of biologically active peptides discovered up till now contain disulfide bridges that enhance stability and activity. To discover new members of this class of peptides, we developed a workflow screening specifically for those peptides that contain inter- and intra-molecular disulfide bonds by means of three-dimensional (3D) mass mapping. Two intrinsic properties of the sulfur atom, (1) its relatively large negative mass defect, and (2) its isotopic composition, allow for differentiation between cysteine-containing peptides and peptides lacking sulfur. High sulfur content in a peptide decreases the normalized nominal mass defect (NMD) and increases the normalized isotopic shift (NIS). Hence in a 3D plot of mass, NIS, and NMD, peptides with sulfur appear in this plot with a distinct spatial localization compared with peptides that lack sulfur. In this study we investigated the skin secretion of two frog species; Odorrana schmackeri and Bombina variegata. Peptides from the crude skin secretions were separated by nanoflow LC, and of all eluting peptides high resolution zoom scans were acquired in order to accurately determine both monoisotopic mass and average mass. Both the NMD and the NIS were calculated from the experimental data using an in-house developed MATLAB script. Candidate peptides exhibiting a low NMD and high NIS values were selected for targeted de novo sequencing, and this resulted in the identification of several novel inter- and intra-molecular disulfide bond containing peptides. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Luuk N van Oosten
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands
| | - Mervin Pieterse
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands
| | - Martijn W H Pinkse
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands
| | - Peter D E M Verhaert
- Department of Biotechnology, Delft University of Technology, 2628 BC, Delft, The Netherlands.
- Department of Biomedical Sciences, Antwerp University, 2610, Antwerp, Belgium.
- CEBMMS (Center of Excellence in Biological and Medical Mass Spectrometry), Department of Clinical Sciences, Lund University, 221 85, Lund, Sweden.
| |
Collapse
|
11
|
Zaikin VG, Sysoev AA. Review: mass spectrometry in Russia. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2013; 19:399-452. [PMID: 24378462 DOI: 10.1255/ejms.1248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The present review covers the main research in the area of mass spectrometry from the 1990s which was about the same time as the Russian Federation emerged from the collapse of the Soviet Union (USSR). It consists of two main parts-application of mass spectrometry to chemistry and related fields and creation and development of mass spectrometric technique. Both traditional and comparatively new mass spectrometric methods were used to solve various problems in organic chemistry (reactivity of gas-phase ions, structure elucidation and problems of identification, quantitative and trace analysis, differentiation of stereoisomers, derivatization approaches etc.), biochemistry (proteomics and peptidomics, lipidomics), medical chemistry (mainly the search of biomarkers, pharmacology, doping control), environmental, petrochemistry, polymer chemistry, inorganic and physical chemistry, determination of natural isotope ratio etc. Although a lot of talented mass spectrometrists left Russia and moved abroad after the collapse of the Soviet Union, the vitality of the mass spectral community proved to be rather high, which allowed the continuation of new developments in the field of mass spectrometric instrumentation. They are devoted to improvements in traditional magnetic sector mass spectrometers and the development of new ion source types, to analysis and modification of quadrupole, time-of-flight (ToF) and ion cyclotron resonance (ICR) analyzers. The most important achievements are due to the creation of multi-reflecting ToF mass analyzers. Special attention was paid to the construction of compact mass spectrometers, particularly for space exploration, of combined instruments, such as ion mobility spectrometer/mass spectrometer and accelerating mass spectrometers. The comparatively young Russian Mass Spectrometry Society is working hard to consolidate the mass spectrometrists from Russia and foreign countries, to train young professionals on new appliances and regularly holds conferences on mass spectrometry. For ten years, a special journal Mass-spektrometria has published papers on all disciplines of mass spectrometry.
Collapse
Affiliation(s)
- Vladimir G Zaikin
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky prospect 29, 119991 Moscow, Russian Federation.
| | - Alexander A Sysoev
- National Research Nuclear University MEPhI, Kashirskoe Shosse 31, 115409 Moscow, Russian Federation
| |
Collapse
|