1
|
Mernie E, Cavallero GJ, Xia C, Lin C, Zaia J. Untangling Heparan Sulfate 3- O-Sulfation Using a Novel Offline Cationic-Peptide Affinity Enrichment, Followed by HILIC-cIM-MS. Anal Chem 2025; 97:8700-8708. [PMID: 40254935 DOI: 10.1021/acs.analchem.4c05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Heparan sulfate (HS) is a linear polysaccharide that modifies proteoglycans. HS biosynthesis is regulated in a spatiotemporal manner, leading to structural diversity, including variable de-N-acetylation, N-sulfation, hexuronic acid C5 epimerization, and 2-O-, 6-O-, and 3-O-sulfation. Specific structural motifs within HS chains offer multiple specific binding sites for protein partners. The occurrence of HS 3-O-sulfation is relatively rare; however, there is accumulating evidence identifying the importance of this low-abundance modification in many different biological scenarios. Initially described as a key determinant for binding and activation of antithrombin, and more recently, as a coreceptor for viral infection, 3-O-sulfation has been associated with the progression of several neurological disorders. The analytical ability to study the biological roles of HS 3-O-sulfation is hindered by its low abundance within HS chains and the complex isomeric nature of highly sulfated HS, which places a burden on the tandem mass spectrometry step for assigning saccharide structures. In this context, we developed a specific cationic peptide-affinity method for 3-O-sulfation enrichment, followed by hydrophilic interaction liquid chromatography-cyclic ion mobility mass spectrometry analysis (HILIC-cIM-MS). We first demonstrated the high specificity of this approach to capture 3-O-sulfated HS oligosaccharides within complex mixtures. We next showed the influence of specific sulfate and epimerization patterns on HS binding selectivity. Finally, we used the enrichment strategy to analyze 3-O-sulfated HS oligosaccharides from heparin lyase III-digested HS from porcine intestinal mucosa (HSPIM). We concluded that this enrichment method was useful to guide new studies to reveal the biological roles of 3-O-sulfation and to elucidate new HS structural motifs.
Collapse
Affiliation(s)
- Elias Mernie
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Gustavo J Cavallero
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Chaoshuang Xia
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Cheng Lin
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Department of Biochemistry & Cell Biology, Center for Biomedical Mass Spectrometry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts 02118, United States
| |
Collapse
|
2
|
Zappe A, Miller RL, Struwe WB, Pagel K. State-of-the-art glycosaminoglycan characterization. MASS SPECTROMETRY REVIEWS 2022; 41:1040-1071. [PMID: 34608657 DOI: 10.1002/mas.21737] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/02/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Glycosaminoglycans (GAGs) are heterogeneous acidic polysaccharides involved in a range of biological functions. They have a significant influence on the regulation of cellular processes and the development of various diseases and infections. To fully understand the functional roles that GAGs play in mammalian systems, including disease processes, it is essential to understand their structural features. Despite having a linear structure and a repetitive disaccharide backbone, their structural analysis is challenging and requires elaborate preparative and analytical techniques. In particular, the extent to which GAGs are sulfated, as well as variation in sulfate position across the entire oligosaccharide or on individual monosaccharides, represents a major obstacle. Here, we summarize the current state-of-the-art methodologies used for GAG sample preparation and analysis, discussing in detail liquid chromatograpy and mass spectrometry-based approaches, including advanced ion activation methods, ion mobility separations and infrared action spectroscopy of mass-selected species.
Collapse
Affiliation(s)
- Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rebecca L Miller
- Department of Cellular and Molecular Medicine, Copenhagen Centre for Glycomics, University of Copenhagen, Copenhagen, Denmark
| | | | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
3
|
Urbi Z, Azmi NS, Ming LC, Hossain MS. A Concise Review of Extraction and Characterization of Chondroitin Sulphate from Fish and Fish Wastes for Pharmacological Application. Curr Issues Mol Biol 2022; 44:3905-3922. [PMID: 36135180 PMCID: PMC9497668 DOI: 10.3390/cimb44090268] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/20/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Chondroitin sulphate (CS) is one of the most predominant glycosaminoglycans (GAGs) available in the extracellular matrix of tissues. It has many health benefits, including relief from osteoarthritis, antiviral properties, tissue engineering applications, and use in skin care, which have increased its commercial demand in recent years. The quest for CS sources exponentially increased due to several shortcomings of porcine, bovine, and other animal sources. Fish and fish wastes (i.e., fins, scales, skeleton, bone, and cartilage) are suitable sources of CS as they are low cost, easy to handle, and readily available. However, the lack of a standard isolation and characterization technique makes CS production challenging, particularly concerning the yield of pure GAGs. Many studies imply that enzyme-based extraction is more effective than chemical extraction. Critical evaluation of the existing extraction, isolation, and characterization techniques is crucial for establishing an optimized protocol of CS production from fish sources. The current techniques depend on tissue hydrolysis, protein removal, and purification. Therefore, this study critically evaluated and discussed the extraction, isolation, and characterization methods of CS from fish or fish wastes. Biosynthesis and pharmacological applications of CS were also critically reviewed and discussed. Our assessment suggests that CS could be a potential drug candidate; however, clinical studies should be conducted to warrant its effectiveness.
Collapse
Affiliation(s)
- Zannat Urbi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
| | - Nina Suhaity Azmi
- Department of Industrial Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan 26300, Malaysia
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Md. Sanower Hossain
- Department of Biomedical Science, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan 25200, Malaysia
- Faculty of Science, Sristy College of Tangail, Tangail 1900, Bangladesh
- Correspondence: (N.S.A.); (M.S.H.); Tel.: +60-12798-0497 (N.S.A.); +60-116960-9649 (M.S.H.)
| |
Collapse
|
4
|
Notaro A, Vershinin Z, Guan Z, Eichler J, De Castro C. An N-linked tetrasaccharide from Halobacterium salinarum presents a novel modification, sulfation of iduronic acid at the O-3 position. Carbohydr Res 2022; 521:108651. [PMID: 36037649 DOI: 10.1016/j.carres.2022.108651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022]
Abstract
Halobacterium salinarum, a halophilic archaeon that grows at near-saturating salt concentrations, provided the first example of N-glycosylation outside Eukarya. Yet, almost 50 years later, numerous aspects of such post-translational protein processing in this microorganism remain to be determined, including the architecture of glycoprotein-bound glycans. In the present report, nuclear magnetic resonance spectroscopy was used to define a tetrasaccharide N-linked to both archaellins, building blocks of the archaeal swimming device (the archaellum), and the S-layer glycoprotein that comprises the protein shell surrounding the Hbt. salinarum cell as β-GlcA(2S)-(1 → 4)-α-IdoA(3S)-(1 → 4)-β-GlcA-(1 → 4)-β-Glc-Asn. The structure of this tetrasaccharide fills gaps remaining from previous studies, including confirmation of the first known inclusion of iduronic acid in an archaeal N-linked glycan. At the same time, the sulfation of this iduronic acid at the O-3 position has not, to the best of our knowledge, been previously seen. As such, this may represent yet another unique facet of N-glycosylation in Archaea.
Collapse
Affiliation(s)
- Anna Notaro
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy
| | - Zlata Vershinin
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, NC, USA
| | - Jerry Eichler
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheva, Israel.
| | - Cristina De Castro
- Department of Agricultural Sciences, University of Napoli Federico II, Portici, Italy.
| |
Collapse
|
5
|
Piovesana S, Capriotti AL, Cavaliere C, Cerrato A, Montone CM, Zenezini Chiozzi R, Laganà A. The Key Role of Metal Adducts in the Differentiation of Phosphopeptide from Sulfopeptide Sequences by High-Resolution Mass Spectrometry. Anal Chem 2022; 94:9234-9241. [PMID: 35714062 PMCID: PMC9260711 DOI: 10.1021/acs.analchem.1c05621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/06/2022] [Indexed: 11/28/2022]
Abstract
Site localization of protein sulfation by high-throughput proteomics remains challenging despite the technological improvements. In this study, sequence analysis and site localization of sulfation in tryptic peptides were determined under a conventional nano-liquid chromatography-mass spectrometry configuration. Tryptic sulfopeptide standards were used to study different fragmentation strategies, including collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), electron-transfer dissociation (ETD), electron-transfer/higher-energy collision dissociation (EThcD), and electron-transfer/collision-induced dissociation (ETciD), in the positive ionization mode. Sulfopeptides displayed only neutral loss of SO3 under CID, while the sequence could be determined for all other tested fragmentation techniques. Results were compared to the same sequences with phosphotyrosine, indicating important differences, as the sequence and modification localization could be studied by all fragmentation strategies. However, the use of metal adducts, especially potassium, provided valuable information for sulfopeptide localization in ETD and ETD-hybrid strategies by stabilizing the modification and increasing the charge state of sulfopeptides. In these conditions, both the sequence and localization could be obtained. In-source neutral loss of SO3 under EThcD provided diagnostic peaks suitable to distinguish the sulfopeptides from the nearly isobaric phosphopeptides. Further confirmation on the modification type was found in the negative ionization mode, where phosphopeptides always had the typical phosphate product ion corresponding to PO3-.
Collapse
Affiliation(s)
- Susy Piovesana
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Anna Laura Capriotti
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Chiara Cavaliere
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Cerrato
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Carmela Maria Montone
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Riccardo Zenezini Chiozzi
- Biomolecular
Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular
Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Centre, Padualaan
8, Utrecht 3584 CH, The Netherlands
| | - Aldo Laganà
- Department
of Chemistry, University of Rome “La
Sapienza”, Piazzale Aldo Moro 5, Rome 00185, Italy
| |
Collapse
|
6
|
Grabarics M, Lettow M, Kirschbaum C, Greis K, Manz C, Pagel K. Mass Spectrometry-Based Techniques to Elucidate the Sugar Code. Chem Rev 2022; 122:7840-7908. [PMID: 34491038 PMCID: PMC9052437 DOI: 10.1021/acs.chemrev.1c00380] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Indexed: 12/22/2022]
Abstract
Cells encode information in the sequence of biopolymers, such as nucleic acids, proteins, and glycans. Although glycans are essential to all living organisms, surprisingly little is known about the "sugar code" and the biological roles of these molecules. The reason glycobiology lags behind its counterparts dealing with nucleic acids and proteins lies in the complexity of carbohydrate structures, which renders their analysis extremely challenging. Building blocks that may differ only in the configuration of a single stereocenter, combined with the vast possibilities to connect monosaccharide units, lead to an immense variety of isomers, which poses a formidable challenge to conventional mass spectrometry. In recent years, however, a combination of innovative ion activation methods, commercialization of ion mobility-mass spectrometry, progress in gas-phase ion spectroscopy, and advances in computational chemistry have led to a revolution in mass spectrometry-based glycan analysis. The present review focuses on the above techniques that expanded the traditional glycomics toolkit and provided spectacular insight into the structure of these fascinating biomolecules. To emphasize the specific challenges associated with them, major classes of mammalian glycans are discussed in separate sections. By doing so, we aim to put the spotlight on the most important element of glycobiology: the glycans themselves.
Collapse
Affiliation(s)
- Márkó Grabarics
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Maike Lettow
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Carla Kirschbaum
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kim Greis
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Christian Manz
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| | - Kevin Pagel
- Institute
of Chemistry and Biochemistry, Freie Universität
Berlin, Arnimallee 22, 14195 Berlin, Germany
- Department
of Molecular Physics, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4−6, 14195 Berlin, Germany
| |
Collapse
|
7
|
Yan N, Li X, Zhou C, Jiang Q, Li J, Zhang Z, Ouyang Y, Li D, Li J. Characterization of degradation products of carrageenan by LC-QTOF/MS with a hypothetical database. Food Chem 2022; 384:132504. [PMID: 35219233 DOI: 10.1016/j.foodchem.2022.132504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/18/2022] [Accepted: 02/16/2022] [Indexed: 11/29/2022]
Abstract
Carrageenan (CGN) belongs to the sulfated polysaccharides family that is commonly used in the food industry. For oligosaccharide analysis, a liquid chromatography quadrupole time-of-flight/mass spectrometry strategy was developed using a hypothetical database. There are 2100 structures in the developed hypothetical κ-CGN database. To eliminate false-positive results, three approaches were used, including size exclusion chromatography with mass spectrometry, which differentiates the loss of sulfated groups caused by the hydrolysis process or the ionization process. Profiling of acidic hydrolysis products of κ-CGN was found that after 12 h of HCl cultivation, the κ-CGN was hydrolyzed to oligosaccharides lower than the degree of polymerization 10, breaking the α-1,3-glycoside linkage and producing even-numbered oligosaccharides. Another finding was that the pH at which acidic hydrolysis is terminated affects the generation of even and odd oligosaccharides. Peeling reaction occurs at the reduction end 4-linked-3,6-anhydrous-d-galactose when adjusted to alkaline conditions, thus generating odd oligosaccharides.
Collapse
Affiliation(s)
- Na Yan
- Sanitation and Environment Technology Institute, Soochow University, Suzhou, Jiangsu 215021, China; College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Xia Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Chundi Zhou
- Sanitation and Environment Technology Institute, Soochow University, Suzhou, Jiangsu 215021, China
| | - Qin Jiang
- Sanitation and Environment Technology Institute, Soochow University, Suzhou, Jiangsu 215021, China
| | - Jiyu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Zhenqing Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China
| | - Yilan Ouyang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| | - Duxin Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215021, China.
| | - Jianxiang Li
- Sanitation and Environment Technology Institute, Soochow University, Suzhou, Jiangsu 215021, China; School of Public Health, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
8
|
Fittolani G, Tyrikos-Ergas T, Vargová D, Chaube MA, Delbianco M. Progress and challenges in the synthesis of sequence controlled polysaccharides. Beilstein J Org Chem 2021; 17:1981-2025. [PMID: 34386106 PMCID: PMC8353590 DOI: 10.3762/bjoc.17.129] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2021] [Indexed: 01/15/2023] Open
Abstract
The sequence, length and substitution of a polysaccharide influence its physical and biological properties. Thus, sequence controlled polysaccharides are important targets to establish structure-properties correlations. Polymerization techniques and enzymatic methods have been optimized to obtain samples with well-defined substitution patterns and narrow molecular weight distribution. Chemical synthesis has granted access to polysaccharides with full control over the length. Here, we review the progress towards the synthesis of well-defined polysaccharides. For each class of polysaccharides, we discuss the available synthetic approaches and their current limitations.
Collapse
Affiliation(s)
- Giulio Fittolani
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Theodore Tyrikos-Ergas
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
- Department of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Denisa Vargová
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Manishkumar A Chaube
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Martina Delbianco
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
9
|
Hogan JD, Wu J, Klein JA, Lin C, Carvalho L, Zaia J. GAGrank: Software for Glycosaminoglycan Sequence Ranking Using a Bipartite Graph Model. Mol Cell Proteomics 2021; 20:100093. [PMID: 33992776 PMCID: PMC8214146 DOI: 10.1016/j.mcpro.2021.100093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/25/2021] [Accepted: 05/07/2021] [Indexed: 01/08/2023] Open
Abstract
The sulfated glycosaminoglycans (GAGs) are long, linear polysaccharide chains that are typically found as the glycan portion of proteoglycans. These GAGs are characterized by repeating disaccharide units with variable sulfation and acetylation patterns along the chain. GAG length and modification patterns have profound impacts on growth factor signaling mechanisms central to numerous physiological processes. Electron activated dissociation tandem mass spectrometry is a very effective technique for assigning the structures of GAG saccharides; however, manual interpretation of the resulting complex tandem mass spectra is a difficult and time-consuming process that drives the development of computational methods for accurate and efficient sequencing. We have recently published GAGfinder, the first peak picking and elemental composition assignment algorithm specifically designed for GAG tandem mass spectra. Here, we present GAGrank, a novel network-based method for determining GAG structure using information extracted from tandem mass spectra using GAGfinder. GAGrank is based on Google's PageRank algorithm for ranking websites for search engine output. In particular, it is an implementation of BiRank, an extension of PageRank for bipartite networks. In our implementation, the two partitions comprise every possible sequence for a given GAG composition and the tandem MS fragments found using GAGfinder. Sequences are given a higher ranking if they link to many important fragments. Using the simulated annealing probabilistic optimization technique, we optimized GAGrank's parameters on ten training sequences. We then validated GAGrank's performance on three validation sequences. We also demonstrated GAGrank's ability to sequence isomeric mixtures using two mixtures at five different ratios.
Collapse
Affiliation(s)
- John D Hogan
- Program in Bioinformatics, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jiandong Wu
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Joshua A Klein
- Program in Bioinformatics, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cheng Lin
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Luis Carvalho
- Program in Bioinformatics, Boston University, Boston, Massachusetts, USA; Department of Mathematics & Statistics, Boston University, Boston, Massachusetts, USA
| | - Joseph Zaia
- Program in Bioinformatics, Boston University, Boston, Massachusetts, USA; Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts, USA.
| |
Collapse
|
10
|
Liu H, Liang Q, Sharp JS. Peracylation Coupled with Tandem Mass Spectrometry for Structural Sequencing of Sulfated Glycosaminoglycan Mixtures without Depolymerization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:2061-2072. [PMID: 32902282 PMCID: PMC7664153 DOI: 10.1021/jasms.0c00178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The structures of glycosaminoglycans (GAGs), especially the patterns of modification, are crucial to modulate interactions with various protein targets. It is very challenging to determine the fine structures using liquid chromatography-mass spectrometry (LC-MS) due in large part to the gas-phase sulfate losses upon collisional activation. Previously, our group reported a method for fine structure analysis that required permethylation of the GAG oligosaccharide. However, uncontrolled depolymerization during the permethylation process due to esterification of uronic acid lowers the reliability of the method to resolve structures of GAGs, especially for larger oligosaccharides. Here, we describe a simplified derivatization method using propionylation and desulfation. The oligosaccharides have all hydroxyl and amine groups protected with propionyl groups and then have sulfate groups removed to generate unprotected hydroxyl and amine groups at all sites that were previously sulfated. This derivatized oligosaccharide generates informative fragments during collision-induced dissociation that resolve the original sulfation patterns. This method is demonstrated to enable accurate determination of sulfation patterns of even the highly sulfated pentasaccharide fondaparinux by MS2 and MS3. Using a mixture of dp6 from porcine heparin, we demonstrate that this method allows for structural characterization of complex mixtures, including clear chromatographic separation and sequencing of structural isomers, all at high yields without evidence of depolymerization. This represents a marked improvement in the reliability to structurally characterize GAG oligosaccharides over permethylation-based derivatization schemes.
Collapse
Affiliation(s)
- Hao Liu
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
| | - Quntao Liang
- College of Biological Science and Engineering, University of Fuzhou, Fujian, 350108, China
| | - Joshua S. Sharp
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, USA
- Department of Chemistry and Biochemistry, University of Mississippi, Oxford, MS 38677, USA
- Correspondence and requests for materials should be addressed to J.S.S. ()
| |
Collapse
|
11
|
Ultraviolet photodissociation of fondaparinux generates signature antithrombin-like 3-O-sulfated -GlcNS3S6S- monosaccharide fragment (Y3/C3). Anal Bioanal Chem 2020; 412:7925-7935. [DOI: 10.1007/s00216-020-02925-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 07/27/2020] [Accepted: 08/28/2020] [Indexed: 12/22/2022]
|
12
|
Han J, Yang D, Hall DR, Liu J, Sun J, Gu W, Tang S, Alharbi HA, Jones PD, Krause HM, Peng H. Toxicokinetics of Brominated Azo Dyes in the Early Life Stages of Zebrafish ( Danio rerio) Is Prone to Aromatic Substituent Changes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4421-4431. [PMID: 32146810 DOI: 10.1021/acs.est.9b07178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brominated azo dyes (BADs) have been identified as predominant indoor brominated pollutants in daycare dust; thus, their potential health risk to children is of concern. However, the toxicities of BADs remain elusive. In this study, the toxicokinetics of two predominant BADs, Disperse Blue 373 (DB373) and Disperse Violet 93 (DV93), and their suspect metabolite 2-bromo-4,6-dinitroaniline (BDNA) was investigated in embryos of zebrafish (Danio rerio). The bioconcentration factor of DV93 at 120 hpf is 6.2-fold lower than that of DB373. The nontarget analysis revealed distinct metabolism routes between DB373 and DV93 by reducing nitro groups to nitroso (DB373) or amine (DV93), despite their similar structures. NAD(P)H quinone oxidoreductase 1 (NQO1) and pyruvate dehydrogenase were predicted as the enzymes responsible for the reduction of DB373 and DV93 by correlating time courses of the metabolites and enzyme development. Further in vitro recombinant enzyme and in vivo inhibition results validated NQO1 as the enzyme specifically reducing DB373, but not DV93. Global proteome profiling revealed that the expression levels of proteins from the "apoptosis-induced DNA fragmentation" pathway were significantly upregulated by all three BADs, supporting the bioactivation of BADs to mutagenic aromatic amines. This study discovered the bioactivation of BADs via distinct eukaryotic enzymes, implying their potential health risks.
Collapse
Affiliation(s)
- Jiajun Han
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - David Ross Hall
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3E8, Canada
| | - Jiabao Liu
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Wen Gu
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Song Tang
- Department of Environmental Toxicology, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hattan A Alharbi
- Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Henry M Krause
- The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3E8, Canada
| |
Collapse
|
13
|
|
14
|
Heparanase as an Additional Tool for Detecting Structural Peculiarities of Heparin Oligosaccharides. Molecules 2019; 24:molecules24234403. [PMID: 31810297 PMCID: PMC6930493 DOI: 10.3390/molecules24234403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 12/03/2022] Open
Abstract
Due to the biological properties of heparin and low-molecular-weight heparin (LMWH), continuous advances in elucidation of their microheterogeneous structure and discovery of novel structural peculiarities are crucial. Effective strategies for monitoring manufacturing processes and assessment of more restrictive specifications, as imposed by the current regulatory agencies, need to be developed. Hereby, we apply an efficient heparanase-based strategy to assert the structure of two major isomeric octasaccharides of dalteparin and investigate the tetrasaccharides arising from antithrombin binding region (ATBR) of bovine mucosal heparin. Heparanase, especially when combined with other sample preparation methods (e.g., size exclusion, affinity chromatography, heparinase depolymerization), was shown to be a powerful tool providing relevant information about heparin structural peculiarities. The applied approach provided direct evidence that oligomers bearing glucuronic acid–glucosamine-3-O-sulfate at their nonreducing end represent an important structural signature of dalteparin. When extended to ATBR-related tetramers of bovine heparin, the heparanase-based approach allowed for elucidation of the structure of minor sequences that have not been reported yet. The obtained results are of high importance in the view of the growing interest of regulatory agencies and manufacturers in the development of low-molecular-weight heparin generics as well as bovine heparin as alternative source.
Collapse
|
15
|
Tyshchuk O, Gstöttner C, Funk D, Nicolardi S, Frost S, Klostermann S, Becker T, Jolkver E, Schumacher F, Koller CF, Völger HR, Wuhrer M, Bulau P, Mølhøj M. Characterization and prediction of positional 4-hydroxyproline and sulfotyrosine, two post-translational modifications that can occur at substantial levels in CHO cells-expressed biotherapeutics. MAbs 2019; 11:1219-1232. [PMID: 31339437 PMCID: PMC6748591 DOI: 10.1080/19420862.2019.1635865] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023] Open
Abstract
Biotherapeutics may contain a multitude of different post-translational modifications (PTMs) that need to be assessed and possibly monitored and controlled to ensure reproducible product quality. During early development of biotherapeutics, unexpected PTMs might be prevented by in silico identification and characterization together with further molecular engineering. Mass determinations of a human IgG1 (mAb1) and a bispecific IgG-ligand fusion protein (BsAbA) demonstrated the presence of unusual PTMs resulting in major +80 Da, and +16/+32 Da chain variants, respectively. For mAb1, analytical cation exchange chromatography demonstrated the presence of an acidic peak accounting for 20%. A + 79.957 Da modification was localized within the light chain complementarity-determining region-2 and identified as a sulfation based on accurate mass, isotopic distribution, and a complete neutral loss reaction upon collision-induced dissociation. Top-down ultrahigh resolution MALDI-ISD FT-ICR MS of modified and unmodified Fabs allowed the allocation of the sulfation to a specific Tyr residue. An aspartate in amino-terminal position-3 relative to the affected Tyr was found to play a key role in determining the sulfation. For BsAbA, a + 15.995 Da modification was observed and localized to three specific Pro residues explaining the +16 Da chain A, and +16 Da and +32 Da chain B variants. The BsAbA modifications were verified as 4-hydroxyproline and not 3-hydroxyproline in a tryptic peptide map via co-chromatography with synthetic peptides containing the two isomeric forms. Finally, our approach for an alert system based on in-house in silico predictors is presented. This system is designed to prevent these PTMs by molecular design and engineering during early biotherapeutic development.
Collapse
Affiliation(s)
- Oksana Tyshchuk
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Christoph Gstöttner
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Dennis Funk
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Simone Nicolardi
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Stefan Frost
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Stefan Klostermann
- Roche Pharma Research and Early Development Informatics, Roche Innovation Center Munich, Penzberg, Germany
| | | | | | - Felix Schumacher
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Claudia Ferrara Koller
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Zurich, Schlieren, Switzerland
| | - Hans Rainer Völger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick Bulau
- Roche Pharma Technical Development Penzberg, Penzberg, Germany
| | - Michael Mølhøj
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
16
|
Abstract
Heparan sulfate (HS) mediates a wide range of protein binding interactions key to normal and pathological physiology. Though liquid chromatography coupled with mass spectrometry (LC-MS) based disaccharide composition analysis is able to profile changes in HS composition, the heterogeneity of modifications and the labile sulfate group present major challenges for liquid chromatography tandem mass spectrometry (LC-MS/MS) sequencing of the HS oligosaccharides that represent protein binding determinants. Here, we report online LC-MS/MS sequencing of HS oligosaccharides using hydrophilic interaction liquid chromatography (HILIC) and negative electron transfer dissociation (NETD). A series of synthetic HS oligosaccharides varying in chain length (tetramers and hexamers), number of sulfate groups (3-7), sulfate patterns (sulfate positional isomers), and uronic acid epimerization (epimers) were separated and sequenced. The LC elution order of isomeric compounds was associated with their fine structure. The application of an online cation exchange device (ion suppressor) enhanced the precursor charge states, and the subsequent NETD produced abundant glycosidic fragments, allowing the characterization of both lowly sulfated and highly sulfated HS oligosaccharides. Furthermore, the diagnostic cross-ring ions differentiated the 6-O sulfation and 3-O sulfation, allowing unambiguous structural assignment. Collectively, this LC-NETD-MS/MS method is a powerful tool for sequencing of heterogeneous HS mixtures and is applicable for the differentiation of both isomers and epimers, for the characterization of saccharide mixtures with a varying extent of sulfation and even for the determination of both predominant and rare modification motifs. Thus, LC-NETD-MS/MS has great potential for further application to biological studies.
Collapse
Affiliation(s)
- Jiandong Wu
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Juan Wei
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, 3584 CG, Netherlands
| | - Cheng Lin
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Department of Biochemistry, Center for Biomedical Mass Spectrometry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Corresponding Author: Tel.: 617-358-2429.
| |
Collapse
|
17
|
Klein DR, Leach FE, Amster IJ, Brodbelt JS. Structural Characterization of Glycosaminoglycan Carbohydrates Using Ultraviolet Photodissociation. Anal Chem 2019; 91:6019-6026. [PMID: 30932467 DOI: 10.1021/acs.analchem.9b00521] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Structural characterization of sulfated glycosaminoglycans (GAGs) by mass spectrometry has long been a formidable analytical challenge owing to their high structural variability and the propensity for sulfate decomposition upon activation with low-energy ion activation methods. While derivatization and complexation workflows have aimed to generate informative spectra using low-energy ion activation methods, alternative ion activation methods present the opportunity to obtain informative spectra from native GAG structures. Both electron- and photon-based activation methods, including electron detachment dissociation (EDD), negative electron transfer dissociation (NETD), and extreme ultraviolet photon activation, have been explored previously to overcome the limitations associated with low-energy activation methods for GAGs and other sulfated oligosaccharides. Further, implementation of such methods on high-resolution mass spectrometers has aided the interpretation of the complex spectra generated. Here, we explore ultraviolet photodissociation (UVPD) implemented on an Orbitrap mass spectrometer as another option for structural characterization of GAGs. UVPD spectra for both dermatan and heparan sulfate structures display extensive fragmentation including both glycosidic and cross-ring cleavages with the extent of sulfate retention comparable to that observed by EDD and NETD. In addition, the relatively short activation time of UVPD makes it promising for higher throughput analysis of GAGs in complex mixtures.
Collapse
Affiliation(s)
- Dustin R Klein
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| | - Franklin E Leach
- Department of Environmental Health Science , The University of Georgia , Athens , Georgia 30602 , United States
| | - I Jonathan Amster
- Department of Chemistry , The University of Georgia , Athens , Georgia 30602 , United States
| | - Jennifer S Brodbelt
- Department of Chemistry , The University of Texas at Austin , Austin , Texas 78712 , United States
| |
Collapse
|
18
|
Borotto NB, Ileka KM, Tom CATMB, Martin BR, Håkansson K. Free Radical Initiated Peptide Sequencing for Direct Site Localization of Sulfation and Phosphorylation with Negative Ion Mode Mass Spectrometry. Anal Chem 2018; 90:9682-9686. [PMID: 30063332 DOI: 10.1021/acs.analchem.8b02707] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tandem mass spectrometry (MS/MS) is the primary method for discovering, identifying, and localizing post-translational modifications (PTMs) in proteins. However, conventional positive ion mode collision induced dissociation (CID)-based MS/MS often fails to yield site-specific information for labile and acidic modifications due to low ionization efficiency in positive ion mode and/or preferential PTM loss. While a number of alternative methods have been developed to address this issue, most require specialized instrumentation or indirect detection. In this work, we present an amine-reactive TEMPO-based free radical initiated peptide sequencing (FRIPS) approach for negative ion mode analysis of phosphorylated and sulfated peptides. FRIPS-based fragmentation generates sequence informative ions for both phosphorylated and sulfated peptides with no significant PTM loss. Furthermore, FRIPS is compared to positive ion mode CID, electron transfer dissociation (ETD), as well as negative ion mode electron capture dissociation (niECD) and CID, both in terms of sequence coverage and fragmentation efficiency for phospho- and sulfo-peptides. Because FRIPS-based fragmentation has no particular instrumentation requirements and shows limited PTM loss, we propose this approach as a promising alternative to current techniques for analysis of labile and acidic PTMs.
Collapse
Affiliation(s)
- Nicholas B Borotto
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Kevin M Ileka
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Christina A T M B Tom
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Brent R Martin
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| | - Kristina Håkansson
- Department of Chemistry , University of Michigan , 930 North University Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|
19
|
Wu J, Wei J, Hogan JD, Chopra P, Joshi A, Lu W, Klein J, Boons GJ, Lin C, Zaia J. Negative Electron Transfer Dissociation Sequencing of 3-O-Sulfation-Containing Heparan Sulfate Oligosaccharides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2018; 29:1262-1272. [PMID: 29564812 PMCID: PMC6004244 DOI: 10.1007/s13361-018-1907-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 01/27/2018] [Accepted: 01/27/2018] [Indexed: 05/10/2023]
Abstract
Among dissociation methods, negative electron transfer dissociation (NETD) has been proven the most useful for glycosaminoglycan (GAG) sequencing because it produces informative fragmentation, a low degree of sulfate losses, high sensitivity, and translatability to multiple instrument types. The challenge, however, is to distinguish positional sulfation. In particular, NETD has been reported to fail to differentiate 4-O- versus 6-O-sulfation in chondroitin sulfate decasaccharide. This raised the concern of whether NETD is able to differentiate the rare 3-O-sulfation from predominant 6-O-sulfation in heparan sulfate (HS) oligosaccharides. Here, we report that NETD generates highly informative spectra that differentiate sites of O-sulfation on glucosamine residues, enabling structural characterizations of synthetic HS isomers containing 3-O-sulfation. Further, lyase-resistant 3-O-sulfated tetrasaccharides from natural sources were successfully sequenced. Notably, for all of the oligosaccharides in this study, the successful sequencing is based on NETD tandem mass spectra of commonly observed deprotonated precursor ions without derivatization or metal cation adduction, simplifying the experimental workflow and data interpretation. These results demonstrate the potential of NETD as a sensitive analytical tool for detailed, high-throughput structural analysis of highly sulfated GAGs. Graphical Abstract.
Collapse
Affiliation(s)
- Jiandong Wu
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, 5th Floor, Boston, MA, 02118, USA
| | - Juan Wei
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, 5th Floor, Boston, MA, 02118, USA
| | - John D Hogan
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Pradeep Chopra
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Apoorva Joshi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Weigang Lu
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
| | - Joshua Klein
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Geert-Jan Boons
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
- Department of Chemistry, University of Georgia, Athens, GA, 30602, USA
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Bijvoet Center for Biomolecular Research, Utrecht University, 3584, Utrecht, CG, Netherlands
| | - Cheng Lin
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, 5th Floor, Boston, MA, 02118, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany Street, 5th Floor, Boston, MA, 02118, USA.
| |
Collapse
|
20
|
Miller RL, Guimond SE, Prescott M, Turnbull JE, Karlsson N. Versatile Separation and Analysis of Heparan Sulfate Oligosaccharides Using Graphitized Carbon Liquid Chromatography and Electrospray Mass Spectrometry. Anal Chem 2017; 89:8942-8950. [DOI: 10.1021/acs.analchem.7b01417] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Rebecca L. Miller
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
- Oncology
Department, University of Oxford, Old Road Campus Research Building, Oxford, OX3 7DQ, U.K
| | - Scott E. Guimond
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Mark Prescott
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Jeremy E. Turnbull
- Centre
for Glycobiology, Department of Biochemistry, Institute of Integrative
Biology, University of Liverpool, Crown Street, Liverpool, L69 7ZB, U.K
| | - Niclas Karlsson
- Department
of Medical Biochemistry and Cell Biology, Institute of Biomedicine,
Sahlgrenska Academy, University of Gothenburg, Box 440, 40530 Gothenburg, Sweden
| |
Collapse
|
21
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2011-2012. MASS SPECTROMETRY REVIEWS 2017; 36:255-422. [PMID: 26270629 DOI: 10.1002/mas.21471] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
This review is the seventh update of the original article published in 1999 on the application of MALDI mass spectrometry to the analysis of carbohydrates and glycoconjugates and brings coverage of the literature to the end of 2012. General aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, and fragmentation are covered in the first part of the review and applications to various structural types constitute the remainder. The main groups of compound are oligo- and poly-saccharides, glycoproteins, glycolipids, glycosides, and biopharmaceuticals. Much of this material is presented in tabular form. Also discussed are medical and industrial applications of the technique, studies of enzyme reactions, and applications to chemical synthesis. © 2015 Wiley Periodicals, Inc. Mass Spec Rev 36:255-422, 2017.
Collapse
Affiliation(s)
- David J Harvey
- Department of Biochemistry, Oxford Glycobiology Institute, University of Oxford, Oxford, OX1 3QU, UK
| |
Collapse
|
22
|
|
23
|
Comparative analysis of INLIGHT™-labeled enzymatically depolymerized heparin by reverse-phase chromatography and high-performance mass spectrometry. Anal Bioanal Chem 2016; 409:499-509. [DOI: 10.1007/s00216-016-0055-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/16/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
|
24
|
Agyekum I, Patel AB, Zong C, Boons GJ, Amster J. Assignment Of Hexuronic Acid Stereochemistry In Synthetic Heparan Sulfate Tetrasaccharides With 2- O-Sulfo Uronic Acids Using Electron Detachment Dissociation. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2015; 390:163-169. [PMID: 26612977 PMCID: PMC4655891 DOI: 10.1016/j.ijms.2015.08.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The present work focuses on the assignment of uronic acid stereochemistry in heparan sulfate (HS) oligomers. The structural elucidation of HS glycosaminoglycans is the subject of considerable importance due to the biological and biomedical significance of this class of carbohydrates. They are highly heterogeneous due to their non-template biosynthesis. Advances in tandem mass spectrometry activation methods, particularly electron detachment dissociation (EDD), has led to the development of methods to assign sites of sulfo modification in glycosaminoglycan oligomers, but there are few reports of the assignment of uronic acid stereochemistry, necessary to distinguish glucuronic acid (GlcA) from iduronic acid (IdoA). Whereas preceding studies focused on uronic acid epimers with no sulfo modification, the current work extends the assignment of the hexuronic acid stereochemistry to 2-O-sulfo uronic acid epimeric tetrasaccharides. The presence of a 2-O-sulfo group on the central uronic acid was found to greatly influence the formation of B3, C2, Z2, and Y1 ions in glucuronic acid and Y2 and 1,5X2 for iduronic acid. The intensity of these peaks can be combined to yield a diagnostic ratios (DR), which can be used to confidently assign the uronic acid stereochemistry.
Collapse
Affiliation(s)
- Isaac Agyekum
- University of Georgia, Department of Chemistry, Athens, GA
| | - Anish B Patel
- University of Georgia, Department of Chemistry, Athens, GA
| | - Chengli Zong
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, United States
| | - Geert-Jan Boons
- University of Georgia, Complex Carbohydrate Research Center, Athens, GA, United States
| | | |
Collapse
|
25
|
Liang QT, Du JY, Fu Q, Lin JH, Wei Z. Preparation and characterization of heparin hexasaccharide library with N-unsubstituted glucosamine residues. Glycoconj J 2015; 32:643-53. [DOI: 10.1007/s10719-015-9612-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/15/2015] [Accepted: 07/24/2015] [Indexed: 11/27/2022]
|
26
|
Robu AC, Popescu L, Munteanu CVA, Seidler DG, Zamfir AD. Orbitrap mass spectrometry characterization of hybrid chondroitin/dermatan sulfate hexasaccharide domains expressed in brain. Anal Biochem 2015; 485:122-31. [PMID: 26123275 DOI: 10.1016/j.ab.2015.06.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 06/16/2015] [Accepted: 06/22/2015] [Indexed: 01/03/2023]
Abstract
In the central nervous system, chondroitin/dermatan sulfate (CS/DS) glycosaminoglycans (GAGs) modulate neurotrophic effects and glial cell maturation during brain development. Previous reports revealed that GAG composition could be responsible for CS/DS activities in brain. In this work, for the structural characterization of DS- and CS-rich domains in hybrid GAG chains extracted from neural tissue, we have developed an advanced approach based on high-resolution mass spectrometry (MS) using nanoelectrospray ionization Orbitrap in the negative ion mode. Our high-resolution MS and multistage MS approach was developed and applied to hexasaccharides obtained from 4- and 14-week-old mouse brains by GAG digestion with chondroitin B and in parallel with AC I lyase. The expression of DS- and CS-rich domains in the two tissues was assessed comparatively. The analyses indicated an age-related structural variability of the CS/DS motifs. The older brain was found to contain more structures and a higher sulfation of DS-rich regions, whereas the younger brain was found to be characterized by a higher sulfation of CS-rich regions. By multistage MS using collision-induced dissociation, we also demonstrated the incidence in mouse brain of an atypical [4,5-Δ-GlcAGalNAc(IdoAGalNAc)2], presenting a bisulfated CS disaccharide formed by 3-O-sulfate-4,5-Δ-GlcA and 6-O-sulfate-GalNAc moieties.
Collapse
Affiliation(s)
- Adrian C Robu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Faculty of Physics, West University of Timisoara, RO-300223 Timisoara, Romania
| | - Laurentiu Popescu
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Faculty of Physics, West University of Timisoara, RO-300223 Timisoara, Romania
| | - Cristian V A Munteanu
- Department of Molecular Cell Biology, Institute of Biochemistry of the Romanian Academy, RO-060031 Bucharest, Romania
| | - Daniela G Seidler
- Institute for Physiological Chemistry and Pathobiochemistry, University of Münster, D-49149 Münster, Germany
| | - Alina D Zamfir
- Mass Spectrometry Laboratory, National Institute for Research and Development in Electrochemistry and Condensed Matter, RO-300224 Timisoara, Romania; Department of Chemical and Biological Sciences, "Aurel Vlaicu" University of Arad, RO-310130 Arad, Romania.
| |
Collapse
|
27
|
Hu H, Huang Y, Mao Y, Yu X, Xu Y, Liu J, Zong C, Boons GJ, Lin C, Xia Y, Zaia J. A computational framework for heparan sulfate sequencing using high-resolution tandem mass spectra. Mol Cell Proteomics 2014; 13:2490-502. [PMID: 24925905 DOI: 10.1074/mcp.m114.039560] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Heparan sulfate (HS) is a linear polysaccharide expressed on cell surfaces, in extracellular matrices and cellular granules in metazoan cells. Through non-covalent binding to growth factors, morphogens, chemokines, and other protein families, HS is involved in all multicellular physiological activities. Its biological activities depend on the fine structures of its protein-binding domains, the determination of which remains a daunting task. Methods have advanced to the point that mass spectra with information-rich product ions may be produced on purified HS saccharides. However, the interpretation of these complex product ion patterns has emerged as the bottleneck to the dissemination of these HS sequencing methods. To solve this problem, we designed HS-SEQ, the first comprehensive algorithm for HS de novo sequencing using high-resolution tandem mass spectra. We tested HS-SEQ using negative electron transfer dissociation (NETD) tandem mass spectra generated from a set of pure synthetic saccharide standards with diverse sulfation patterns. The results showed that HS-SEQ rapidly and accurately determined the correct HS structures from large candidate pools.
Collapse
Affiliation(s)
- Han Hu
- From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA; §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Huang
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yang Mao
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Xiang Yu
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yongmei Xu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Jian Liu
- ¶ Division of Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Chengli Zong
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Geert-Jan Boons
- **Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Cheng Lin
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA
| | - Yu Xia
- ‖Department of Bioengineering, Faculty of Engineering, McGill University, Montreal, Quebec H3A 0C3, Canada; From the ‡Bioinformatics Program, Boston University, Boston, Massachusetts 02215, USA
| | - Joseph Zaia
- §Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine, Boston University, Boston, Massachusetts 02118, USA;
| |
Collapse
|
28
|
Witt L, Pirkl A, Draude F, Peter-Katalinić J, Dreisewerd K, Mormann M. Water ice is a soft matrix for the structural characterization of glycosaminoglycans by infrared matrix-assisted laser desorption/ionization. Anal Chem 2014; 86:6439-46. [PMID: 24862464 DOI: 10.1021/ac5008706] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Glycosaminoglycans (GAGs) are a class of heterogeneous, often highly sulfated glycans that form linear chains consisting of up to 100 monosaccharide building blocks and more. GAGs are ubiquitous constituents of connective tissue, cartilage, and the extracellular matrix, where they have key functions in many important biological processes. For their characterization by mass spectrometry (MS) and tandem MS, the high molecular weight polymers are usually enzymatically digested to oligomers with a low degree of polymerization (dp), typically disaccharides. However, owing to their lability elimination of sulfate groups upon desorption/ionization is often encountered leading to a loss of information on the analyte. Here, we demonstrate that, in particular, water ice constitutes an extremely mild matrix for the analysis of highly sulfated GAG disaccharides by infrared matrix-assisted laser desorption/ionization (IR-MALDI) mass spectrometry. Depending on the degree of sulfation, next to the singly charged ionic species doubly- and even triply charged ions are formed. An unambiguous assignment of the sulfation sites becomes possible by subjecting sodium adducts of the GAGs to low-energy collision-induced dissociation tandem MS. These ionic species exhibit a remarkable stability of the sulfate substituents, allowing the formation of fragment ions retaining their sulfation that arise from either cross-ring cleavages or rupture of the glycosidic bonds, thereby allowing an unambiguous assignment of the sulfation sites.
Collapse
Affiliation(s)
- Lukas Witt
- Institute for Hygiene, University of Münster , 48149 Münster, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Huang Y, Yu X, Mao Y, Costello CE, Zaia J, Lin C. De novo sequencing of heparan sulfate oligosaccharides by electron-activated dissociation. Anal Chem 2013; 85:11979-86. [PMID: 24224699 PMCID: PMC3912864 DOI: 10.1021/ac402931j] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Structural characterization of highly sulfated glycosaminoglycans (GAGs) by collisionally activated dissociation (CAD) is challenging because of the extensive sulfate losses mediated by free protons. While removal of the free protons may be achieved through the use of derivatization, metal cation adducts, and/or electrospray supercharging reagents, these steps add complexity to the experimental workflow. It is therefore desirable to develop an analytical approach for GAG sequencing that does not require derivatization or addition of reagents to the electrospray solution. Electron detachment dissociation (EDD) can produce extensive and informative fragmentation for GAGs without the need to remove free protons from the precursor ions. However, EDD is an inefficient process, often requiring consumption of large sample quantities (typically several micrograms), particularly for highly sulfated GAG ions. Here, we report that with improved instrumentation, optimization of the ionization and ion transfer parameters, and enhanced EDD efficiency, it is possible to generate highly informative EDD spectra of highly sulfated GAGs on the liquid chromatography (LC) timescale, with consumption of only a few nanograms of sample. We further show that negative electron transfer dissociation (NETD) is an even more effective fragmentation technique for GAG sequencing, producing fewer sulfate losses while consuming smaller amount of samples. Finally, a simple algorithm was developed for de novo HS sequencing based on their high-resolution tandem mass spectra. These results demonstrate the potential of EDD and NETD as sensitive analytical tools for detailed, high-throughput, de novo structural analyses of highly sulfated GAGs.
Collapse
Affiliation(s)
| | | | - Yang Mao
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Catherine E. Costello
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Joseph Zaia
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| | - Cheng Lin
- Mass Spectrometry Resource, Department of Biochemistry, Boston University School of Medicine 670 Albany Street, Suite 504, Boston, Massachusetts 02118, United States
| |
Collapse
|
30
|
Shao C, Shi X, Phillips JJ, Zaia J. Mass spectral profiling of glycosaminoglycans from histological tissue surfaces. Anal Chem 2013; 85:10984-91. [PMID: 24099043 PMCID: PMC3872031 DOI: 10.1021/ac402517s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Glycosaminoglycans (GAGs) are found in intracellular granules, cell surfaces, and extracellular matrices in a spatially and temporally regulated fashion, constituting the environment for cells to interact, migrate, and proliferate. Through binding with a great number of proteins, GAGs regulate many facets of biological processes from embryonic development to normal physiological functions. GAGs have been shown to be involved in pathologic changes and immunological responses including cancer metastasis and inflammation. Past analyses of GAGs have focused on cell lines, body fluids, and relatively large tissue samples. Structures determined from such samples reflect the heterogeneity of the cell types present. To gain an understanding of the roles played by GAG expression during pathogenesis, it is very important to be able to detect and profile GAGs at the histological scale so as to minimize cell heterogeneity to potentially inform diagnosis and prognosis. Heparan sulfate (HS) belongs to one major class of GAGs, characterized by dramatic structural heterogeneity and complexity. To demonstrate feasibility of analysis of HS, 15 μm frozen bovine brain stem, cortex, and cerebellum tissue sections were washed with a series of solvent solutions to remove lipids before applying heparin lyases I, II, and III on the tissue surfaces within 5 mm × 5 mm digestion spots. The digested HS disaccharides were extracted from tissue surfaces and then analyzed by using size exclusion chromatography/mass spectrometry (SEC-MS). The results from bovine brain stem, cortex, and cerebellum demonstrated the reproducibility and reliability of our profiling method. We applied our method to detect HS from human astrocytoma (WHO grade II) and glioblastoma (GBM, WHO grade IV) frozen slides. Higher HS abundances and lower average sulfation level of HS were detected in glioblastoma (GBM, WHO grade IV) slides compared to astrocytoma (WHO grade II) slides.
Collapse
Affiliation(s)
- Chun Shao
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine
| | - Xiaofeng Shi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine
| | - Joanna J. Phillips
- Department of Neurological Surgery, Division of Neuropathology, Department of Pathology University of California, San Francisco
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University School of Medicine
| |
Collapse
|
31
|
Gesslbauer B, Theuer M, Schweiger D, Adage T, Kungl AJ. New targets for glycosaminoglycans and glycosaminoglycans as novel targets. Expert Rev Proteomics 2013; 10:77-95. [PMID: 23414361 DOI: 10.1586/epr.12.75] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biological functions of a variety of proteins are mediated via their interaction with glycosaminoglycans (GAGs). The structural diversity within the wide GAG landscape provides individual interaction sites for a multitude of proteins involved in several pathophysiological processes. This 'GAG angle' of such proteins as well as their specific GAG ligands give rise to novel therapeutic concepts for drug development. Current glycomic technologies to elucidate the glycan structure-function relationships, methods to investigate the selectivity and specificity of glycan-protein interactions and existing therapeutic approaches to interfere with GAG-protein interactions are discussed.
Collapse
Affiliation(s)
- Bernd Gesslbauer
- ProtAffin Biotechnologie AG, Reininghausstrasse 13a, 8020 Graz, Austria
| | | | | | | | | |
Collapse
|
32
|
Shi X, Shao C, Mao Y, Huang Y, Wu ZL, Zaia J. LC-MS and LC-MS/MS studies of incorporation of 34SO3 into glycosaminoglycan chains by sulfotransferases. Glycobiology 2013; 23:969-79. [PMID: 23696150 PMCID: PMC3695753 DOI: 10.1093/glycob/cwt033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 04/29/2013] [Accepted: 04/29/2013] [Indexed: 12/15/2022] Open
Abstract
The specificities of glycosaminoglycan (GAG) modification enzymes, particularly sulfotransferases, and the locations and concentrations of these enzymes in the Golgi apparatus give rise to the mature GAG polysaccharides that bind protein ligands. We studied the substrate specificities of sulfotransferases with a stable isotopically labeled donor substrate, 3'-phosphoadenosine-5'-phosphosulfate. The sulfate incorporated by in vitro sulfation using recombinant sulfotransferases was easily distinguished from those previously present on the GAG chains using mass spectrometry. The enrichment of the [M + 2] isotopic peak caused by (34)S incorporation, and the [M + 2]/[M + 1] ratio, provided reliable and sensitive measures of the degree of in vitro sulfation. It was found that both CHST3 and CHST15 have higher activities at the non-reducing end (NRE) units of chondroitin sulfate, particularly those terminating with a GalNAc monosaccharide. In contrast, both NDST1 and HS6ST1 showed lower activities at the NRE of heparan sulfate (HS) chains than at the interior of the chain. Contrary to the traditional view of HS biosynthesis processes, NDST1 also showed activity on O-sulfated GlcNAc residues.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| | - Chun Shao
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| | - Yang Mao
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| | - Yu Huang
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| | - Zhengliang L Wu
- R&D Systems, Inc., 614 McKinley Place N.E., Minneapolis, MN 55413, USA
| | - Joseph Zaia
- Department of Biochemistry and Center for Biomedical Mass Spectrometry, Boston University School of Medicine, 670 Albany St., Rm. 509, Boston, MA 02118, USA
| |
Collapse
|
33
|
Abstract
The fact that sulfated glycosaminoglycans (GAGs) are necessary for the functioning of all animal physiological systems drives the need to understand their biology. This understanding is limited, however, by the heterogeneous nature of GAG chains and their dynamic spatial and temporal expression patterns. GAGs have a regulated structure overlaid by heterogeneity but lack the detail necessary to build structure/function relationships. In order to provide this information, we need glycomics platforms that are sensitive, robust, high throughput, and information rich. This review summarizes progress on mass-spectrometry-based GAG glycomics methods. The areas covered include disaccharide analysis, oligosaccharide profiling, and tandem mass spectrometric sequencing.
Collapse
Affiliation(s)
- Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Boston University, Boston, Massachusetts 02118, USA.
| |
Collapse
|