1
|
Calarco JA, Taylor SR, Miller DM. Detecting gene expression in Caenorhabditis elegans. Genetics 2025; 229:1-108. [PMID: 39693264 PMCID: PMC11979774 DOI: 10.1093/genetics/iyae167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 09/30/2024] [Indexed: 12/20/2024] Open
Abstract
Reliable methods for detecting and analyzing gene expression are necessary tools for understanding development and investigating biological responses to genetic and environmental perturbation. With its fully sequenced genome, invariant cell lineage, transparent body, wiring diagram, detailed anatomy, and wide array of genetic tools, Caenorhabditis elegans is an exceptionally useful model organism for linking gene expression to cellular phenotypes. The development of new techniques in recent years has greatly expanded our ability to detect gene expression at high resolution. Here, we provide an overview of gene expression methods for C. elegans, including techniques for detecting transcripts and proteins in situ, bulk RNA sequencing of whole worms and specific tissues and cells, single-cell RNA sequencing, and high-throughput proteomics. We discuss important considerations for choosing among these techniques and provide an overview of publicly available online resources for gene expression data.
Collapse
Affiliation(s)
- John A Calarco
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada, M5S 3G5
| | - Seth R Taylor
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
| | - David M Miller
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
- Neuroscience Program, Vanderbilt University, Nashville, TN 37240, USA
| |
Collapse
|
2
|
Brademan DR, Riley NM, Kwiecien NW, Coon JJ. Interactive Peptide Spectral Annotator: A Versatile Web-based Tool for Proteomic Applications. Mol Cell Proteomics 2019; 18:S193-S201. [PMID: 31088857 PMCID: PMC6692776 DOI: 10.1074/mcp.tir118.001209] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/21/2019] [Indexed: 11/06/2022] Open
Abstract
Here we present IPSA, an innovative web-based spectrum annotator that visualizes and characterizes peptide tandem mass spectra. A tool for the scientific community, IPSA can visualize peptides collected using a wide variety of experimental and instrumental configurations. Annotated spectra are customizable via a selection of interactive features and can be exported as editable scalable vector graphics to aid in the production of publication-quality figures. Single spectra can be analyzed through provided web forms, whereas data for multiple peptide spectral matches can be uploaded using the Proteomics Standards Initiative file formats mzTab, mzIdentML, and mzML. Alternatively, peptide identifications and spectral data can be provided using generic file formats. IPSA provides supports for annotating spectra collecting using negative-mode ionization and facilitates the characterization of experimental MS/MS performance through the optional export of fragment ion statistics from one to many peptide spectral matches. This resource is made freely accessible at http://interactivepeptidespectralannotator.com, whereas the source code and user guides are available at https://github.com/coongroup/IPSA for private hosting or custom implementations.
Collapse
Affiliation(s)
- Dain R Brademan
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Genome Center of Wisconsin, Madison, WI 53706
| | - Nicholas M Riley
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Genome Center of Wisconsin, Madison, WI 53706
| | - Nicholas W Kwiecien
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Genome Center of Wisconsin, Madison, WI 53706
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706; Morgridge Institute for Research, Madison, WI 53715; Genome Center of Wisconsin, Madison, WI 53706; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706.
| |
Collapse
|
3
|
Leslie Pedrioli DM, Leutert M, Bilan V, Nowak K, Gunasekera K, Ferrari E, Imhof R, Malmström L, Hottiger MO. Comprehensive ADP-ribosylome analysis identifies tyrosine as an ADP-ribose acceptor site. EMBO Rep 2018; 19:embr.201745310. [PMID: 29954836 DOI: 10.15252/embr.201745310] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 06/01/2018] [Accepted: 06/07/2018] [Indexed: 12/16/2022] Open
Abstract
Despite recent mass spectrometry (MS)-based breakthroughs, comprehensive ADP-ribose (ADPr)-acceptor amino acid identification and ADPr-site localization remain challenging. Here, we report the establishment of an unbiased, multistep ADP-ribosylome data analysis workflow that led to the identification of tyrosine as a novel ARTD1/PARP1-dependent in vivo ADPr-acceptor amino acid. MS analyses of in vitro ADP-ribosylated proteins confirmed tyrosine as an ADPr-acceptor amino acid in RPS3A (Y155) and HPF1 (Y238) and demonstrated that trans-modification of RPS3A is dependent on HPF1. We provide an ADPr-site Localization Spectra Database (ADPr-LSD), which contains 288 high-quality ADPr-modified peptide spectra, to serve as ADPr spectral references for correct ADPr-site localizations.
Collapse
Affiliation(s)
| | - Mario Leutert
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, Zurich, Switzerland
| | - Vera Bilan
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Kathrin Nowak
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland.,Molecular Life Science PhD Program of the Life Science Zurich Graduate School, Zurich, Switzerland
| | - Kapila Gunasekera
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Elena Ferrari
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Ralph Imhof
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| | - Lars Malmström
- S3IT and Institute for Computational Science, University of Zurich, Zurich, Switzerland
| | - Michael O Hottiger
- Department of Molecular Mechanisms of Disease, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Murray JI. Systems biology of embryonic development: Prospects for a complete understanding of the Caenorhabditis elegans embryo. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e314. [PMID: 29369536 DOI: 10.1002/wdev.314] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 01/07/2023]
Abstract
The convergence of developmental biology and modern genomics tools brings the potential for a comprehensive understanding of developmental systems. This is especially true for the Caenorhabditis elegans embryo because its small size, invariant developmental lineage, and powerful genetic and genomic tools provide the prospect of a cellular resolution understanding of messenger RNA (mRNA) expression and regulation across the organism. We describe here how a systems biology framework might allow large-scale determination of the embryonic regulatory relationships encoded in the C. elegans genome. This framework consists of two broad steps: (a) defining the "parts list"-all genes expressed in all cells at each time during development and (b) iterative steps of computational modeling and refinement of these models by experimental perturbation. Substantial progress has been made towards defining the parts list through imaging methods such as large-scale green fluorescent protein (GFP) reporter analysis. Imaging results are now being augmented by high-resolution transcriptome methods such as single-cell RNA sequencing, and it is likely the complete expression patterns of all genes across the embryo will be known within the next few years. In contrast, the modeling and perturbation experiments performed so far have focused largely on individual cell types or genes, and improved methods will be needed to expand them to the full genome and organism. This emerging comprehensive map of embryonic expression and regulatory function will provide a powerful resource for developmental biologists, and would also allow scientists to ask questions not accessible without a comprehensive picture. This article is categorized under: Invertebrate Organogenesis > Worms Technologies > Analysis of the Transcriptome Gene Expression and Transcriptional Hierarchies > Gene Networks and Genomics.
Collapse
Affiliation(s)
- John Isaac Murray
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
5
|
Norris EL, Headlam MJ, Dave KA, Smith DD, Bukreyev A, Singh T, Jayakody BA, Chappell KJ, Collins PL, Gorman JJ. Proteoform-Specific Insights into Cellular Proteome Regulation. Mol Cell Proteomics 2016; 15:3297-3320. [PMID: 27451424 PMCID: PMC5054351 DOI: 10.1074/mcp.o116.058438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Indexed: 01/29/2023] Open
Abstract
Knowledge regarding compositions of proteomes at the proteoform level enhances insights into cellular phenotypes. A strategy is described herein for discovery of proteoform-specific information about cellular proteomes. This strategy involved analysis of data obtained by bottom-up mass spectrometry of multiple protein OGE separations on a fraction by fraction basis. The strategy was exemplified using five matched sets of lysates of uninfected and human respiratory syncytial virus-infected A549 cells. Template matching demonstrated that 67.3% of 10475 protein profiles identified focused to narrow pI windows indicative of efficacious focusing. Furthermore, correlation between experimental and theoretical pI gradients indicated reproducible focusing. Based on these observations a proteoform profiling strategy was developed to identify proteoforms, detect proteoform diversity and discover potential proteoform regulation. One component of this strategy involved examination of the focusing profiles for protein groups. A novel concordance analysis facilitated differentiation between proteoforms, including proteoforms generated by alternate splicing and proteolysis. Evaluation of focusing profiles and concordance analysis were applicable to cells from a single and/or multiple biological states. Statistical analyses identified proteoform variation between biological states. Regulation relevant to cellular responses to human respiratory syncytial virus was revealed. Western blotting and Protomap analyses validated the proteoform regulation. Discovery of STAT1, WARS, MX1, and HSPB1 proteoform regulation by human respiratory syncytial virus highlighted the impact of the profiling strategy. Novel truncated proteoforms of MX1 were identified in infected cells and phosphorylation driven regulation of HSPB1 proteoforms was correlated with infection. The proteoform profiling strategy is generally applicable to investigating interactions between viruses and host cells and the analysis of other biological systems.
Collapse
Affiliation(s)
| | | | | | - David D Smith
- §Statistics Unit, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Alexander Bukreyev
- ¶Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and
| | | | | | - Keith J Chappell
- ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter L Collins
- ¶Respiratory Virus Section, Laboratory of Infectious Diseases, National Institute for Allergy and Infectious Diseases, NIH, Bethesda, Maryland, and
| | - Jeffrey J Gorman
- From the ‡Protein Discovery Centre and ‖School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
6
|
Parker WR, Holden DD, Cotham VC, Xu H, Brodbelt JS. Cysteine-Selective Peptide Identification: Selenium-Based Chromophore for Selective S-Se Bond Cleavage with 266 nm Ultraviolet Photodissociation. Anal Chem 2016; 88:7222-9. [PMID: 27320857 DOI: 10.1021/acs.analchem.6b01465] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The tremendous number of peptides identified in current bottom-up mass spectrometric workflows, although impressive for high-throughput proteomics, results in little selectivity for more targeted applications. We describe a strategy for cysteine-selective proteomics based on a tagging method that installs a S-Se bond in peptides that is cleavable upon 266 nm ultraviolet photodissociation (UVPD). The alkylating reagent, N-(phenylseleno)phthalimide (NPSP), reacts with free thiols in cysteine residues and attaches a chromogenic benzeneselenol (SePh) group. Upon irradiation of tagged peptides with 266 nm photons, the S-Se bond is selectively cleaved, releasing a benzeneselenol moiety corresponding to a neutral loss of 156 Da per cysteine. Herein we demonstrate a new MS/MS scan mode, UVPDnLossCID, which facilitates selective screening of cysteine-containing peptides. A "prescreening" event occurs by activation of the top N peptide ions by 266 nm UVPD. Peptides exhibiting a neutral loss corresponding to one or more SePh groups are reactivated and sequenced by CID. Because of the low frequency of cysteine in the proteome, unique cysteine-containing peptides may serve as surrogates for entire proteins. UVPDnLossCID does not generate as many peptide spectrum matches (PSMs) as conventional bottom-up methods; however, UVPDnLossCID provides far greater selectivity.
Collapse
Affiliation(s)
- W Ryan Parker
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Dustin D Holden
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Victoria C Cotham
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Hua Xu
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| | - Jennifer S Brodbelt
- Department of Chemistry, University of Texas , Austin, Texas 78712, United States
| |
Collapse
|