1
|
Ha NTT, Be PT, Ngoc Ha N. Adsorption of lindane (γ-hexachlorocyclohexane) on nickel modified graphitic carbon nitride: a theoretical study. RSC Adv 2021; 11:21048-21056. [PMID: 35479347 PMCID: PMC9034011 DOI: 10.1039/d1ra03797h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 11/21/2022] Open
Abstract
Adsorption of lindane (HCH) on nickel modified graphitic carbon nitride (Ni-gCN) was investigated using a novel, accurate and broadly parametrized self-consistent tight-binding quantum chemical (GFN2-xTB) method. Two graphitic carbon nitride (gCN) models were used: corrugated and planar, which represent the material with different thicknesses. Electronic properties of the adsorbates and adsorbent were estimated via vertical ionization potential, vertical electron affinity, global electrophilicity index and the HOMO and LUMO. Adsorption energy and population analyses were carried out to figure out the nature of the adsorption process. The results reveal that the introduction of the nickel atom significantly influences the electronic properties of gCN, and results in the improvement of adsorption ability of gCN for lindane. Lindane adsorption on Ni-gCN is considered as chemisorption, which is primarily supported by the interaction of the nickel atom and chlorine atoms of HCH. The effect of solvents (water, ethanol, acetonitrile) was investigated via the analytical linearized Poisson-Boltzmann model. Due to the strong chemisorption, Ni-gCN can collect lindane from different solvents. The adsorption configurations of HCH on Ni-gCN were also shown to be thermally stable at 298 K, 323 K, 373 K, 473 K, and 573 K via molecular simulation calculations. The obtained results are useful for a better understanding of lindane adsorption on Ni-gCN and for the design of materials with high efficiency for lindane treatment based on adsorption-photocatalytic technology.
Collapse
Affiliation(s)
- Nguyen Thi Thu Ha
- Faculty of Chemistry, Hanoi National University of Education 136 Xuan Thuy Str. Hanoi Vietnam
| | - Pham Thi Be
- Faculty of Chemistry, Hanoi National University of Education 136 Xuan Thuy Str. Hanoi Vietnam
- Faculty of Natural Science and Technology, Taynguyen University Daklak Vietnam
| | - Nguyen Ngoc Ha
- Faculty of Chemistry, Hanoi National University of Education 136 Xuan Thuy Str. Hanoi Vietnam
| |
Collapse
|
2
|
Imasaka T, Imasaka T. Femtosecond ionization mass spectrometry for chromatographic detection. J Chromatogr A 2021; 1642:462023. [PMID: 33714081 DOI: 10.1016/j.chroma.2021.462023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/13/2021] [Accepted: 02/23/2021] [Indexed: 11/17/2022]
Abstract
Mass spectrometry is now in widespread use for the detection of the analytes separated by chromatography. Electron ionization is the most frequently used method in mass spectrometry. However, this ionization technique sometimes suffers from extensive fragmentation of analytes, which makes identification difficult. A photoionization technique has been developed for suppressing this fragmentation and for subsequently observing a molecular ion. A variety of lasers have been employed for the sensitive and selective ionization of organic compounds. A femtosecond laser has a high peak power and is preferential for efficient ionization as well as for suppressing fragmentation, providing valuable information concerning molecular weight and chemical structure as well. In this review, we report on applications of femtosecond ionization mass spectrometry combined with gas chromatography.
Collapse
Affiliation(s)
- Totaro Imasaka
- Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Hikari Giken, Co., 2-10-30, Sakurazaka, Chuou-ku, Fukuoka 810-0024, Japan
| | - Tomoko Imasaka
- Department of Environmental Design, Faculty of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540, Japan.
| |
Collapse
|
3
|
Phan TD, Li A, Nakamura H, Imasaka T, Imasaka T. Single-Photon Ionization Mass Spectrometry Using a Vacuum Ultraviolet Femtosecond Laser. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1730-1737. [PMID: 32608978 DOI: 10.1021/jasms.0c00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The wavelength of a femtosecond Ti:sapphire laser (TS, 800 nm) was converted into the ultraviolet (UV, 200 nm) using three β-barium borate crystals (β-BaB2O4) for frequency doubling and subsequent mixing. The UV pulse was further converted into the vacuum ultraviolet (VUV, 185 nm) based on four-wave Raman mixing, in which a two-color pump beam consisting of the fundamental beam (800 nm) of the TS and the signal beam of an optical parametric amplifier (1200 nm) pumped by the TS was focused onto a capillary waveguide filled with hydrogen gas for molecular phase modulation and the single-color UV probe beam (200 nm) was then focused onto the waveguide for frequency modulation to generate anti-Stokes and high-order Stokes Raman sidebands at wavelengths of 185 and 218-267 nm, respectively. The efficiency of conversion from the UV (200 nm) to the VUV (185 nm) was 6%. The ionization energy was calculated for 13 amino polycyclic aromatic hydrocarbons using density functional theory, since they are associated with the development of occupational bladder cancers. The values calculated by the B3LYP/cc-pVDZ and ωB97Xd/cc-pVTZ methods were 6.24-7.14 eV (199-174 nm) and 6.41-7.35 eV (194-169 nm), respectively. A sample containing a mixture of 9-aminoanthracene, 3-aminofluoranthene, and 1-aminopyrene was separated by gas chromatography (GC), and the eluents were ionized with the VUV pulse (0.015 μJ) in mass spectrometry (MS). The analytes were observed on a two-dimensional display of GC/MS, and the detection limit obtained by single-photon ionization of 3-aminofluoranthene was 1 ng/μL.
Collapse
Affiliation(s)
- Thang Dinh Phan
- Division of International Strategy, Center of Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Adan Li
- Division of International Strategy, Center of Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- College of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Hiroshi Nakamura
- Division of International Strategy, Center of Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoko Imasaka
- Department of Environmental Design, Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
| | - Totaro Imasaka
- Division of International Strategy, Center of Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Hikari Giken, Co., 2-10-30, Sakurazaka, Chuou-ku, Fukuoka 810-0024, Japan
| |
Collapse
|
4
|
Schäfer V, Weitzel KM. Qualitative and Quantitative Distinction of ortho-, meta-, and para-Fluorotoluene by Means of Chirped Femtosecond Laser Ionization. Anal Chem 2020; 92:5492-5499. [DOI: 10.1021/acs.analchem.0c00234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Viola Schäfer
- Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein Strasse, 35043 Marburg, Germany
| | - Karl-Michael Weitzel
- Philipps-Universität Marburg, Fachbereich Chemie, Hans-Meerwein Strasse, 35043 Marburg, Germany
| |
Collapse
|
5
|
Madunil SL, Imasaka T, Imasaka T. Resonant and non-resonant femtosecond ionization mass spectrometry of organochlorine pesticides. Analyst 2020; 145:777-783. [DOI: 10.1039/c9an01861a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The ionization mechanism was studied based on resonance-enhanced two-photon ionization and non-resonant two- and three-photon ionizations.
Collapse
Affiliation(s)
| | - Totaro Imasaka
- Division of International Strategy
- Center of Future Chemistry
- Kyushu University
- Fukuoka 819-0395
- Japan
| | | |
Collapse
|
6
|
Son VV, Nakamura H, Imasaka T, Imasaka T. Determination of nerve agent metabolites in human urine by femtosecond laser ionization mass spectrometry using 2-(bromomethyl)naphthalene as a derivatizing reagent. Anal Chim Acta 2019; 1069:82-88. [DOI: 10.1016/j.aca.2019.04.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 03/22/2019] [Accepted: 04/08/2019] [Indexed: 12/01/2022]
|
7
|
Yang X, Imasaka T, Imasaka T. Determination of Pesticides by Gas Chromatography Combined with Mass Spectrometry Using Femtosecond Lasers Emitting at 267, 400, and 800 nm as the Ionization Source. Anal Chem 2018; 90:4886-4893. [PMID: 29509001 DOI: 10.1021/acs.analchem.8b00537] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A standard sample mixture containing 51 pesticides was separated by gas chromatography (GC), and the constituents were identified by mass spectrometry (MS) using femtosecond lasers emitting at 267, 400, and 800 nm as the ionization source. A two-dimensional display of the GC/MS was successfully used for the determination of these compounds. A molecular ion was observed for 38 of the compounds at 267 nm and for 30 of the compounds at 800 nm, in contrast to 27 among 50 compounds when electron ionization was used. These results suggest that the ultraviolet laser is superior to the near-infrared laser for molecular weight determinations and for a more reliable analysis of these compounds. In order to study the conditions for optimal ionization, the experimental data were examined using the spectral properties (i.e., the excitation and ionization energies and absorption spectra for the neutral and ionized species) obtained by quantum chemical calculations. A few molecules remained unexplained by the currently reported rules, requiring additional rules for developing a full understanding of the femtosecond ionization process. The pesticides in the homogenized matrix obtained from kabosu ( citrus sphaerocarpa) were measured using lasers emitting at 267 and 800 nm. The pesticides were clearly separated and measured on the two-dimensional display, especially for the data measured at 267 nm, suggesting that this technique would have potential for use in the practical trace analysis of the pesticides in the environment.
Collapse
Affiliation(s)
- Xixiang Yang
- Department of Applied Chemistry, Graduate School of Engineering , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| | - Tomoko Imasaka
- Department of Environmental Design, Graduate School of Design , Kyushu University , 4-9-1, Shiobaru , Minami-ku, Fukuoka 815-8540 , Japan
| | - Totaro Imasaka
- Division of International Strategy, Center of Future Chemistry , Kyushu University , 744 Motooka , Nishi-ku, Fukuoka 819-0395 , Japan
| |
Collapse
|
8
|
Shibuta S, Imasaka T, Imasaka T. Determination of Fragrance Allergens by Ultraviolet Femtosecond Laser Ionization Mass Spectrometry. Anal Chem 2016; 88:10693-10700. [DOI: 10.1021/acs.analchem.6b03229] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Shimpei Shibuta
- Department
of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744
Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Tomoko Imasaka
- Laboratory of
Chemistry, Graduate School of Design, Kyushu University, 4-9-1, Shiobaru, Minami-ku, Fukuoka 815-8540, Japan
| | - Totaro Imasaka
- Division of International
Strategy, Center of Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|