1
|
Patil AA, Liu ZX, Chiu YP, Lại TKL, Chou SW, Cheng CY, Su WM, Liao HT, Agcaoili JBA, Peng WP. Development of a linear ion trap mass spectrometer capable of analyzing megadalton MALDI ions. Talanta 2023; 259:124555. [PMID: 37088041 DOI: 10.1016/j.talanta.2023.124555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/02/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Detecting megadalton matrix-assisted laser desorption/ionization (MALDI) ions in an ion trap mass spectrometer is a technical challenge. In this study, megadalton protein and polymer ions were successfully measured by MALDI linear ion trap mass spectrometer (LIT-MS) for the first time. The LIT-MS is comprised of a Thermo linear ion trap mass analyzer and a highly sensitive charge-sensing particle detector (CSPD). A newly designed radio frequency (rf) scan mode with dipolar resonance ejection techniques is proposed to extend the mass range of LIT-MS up to one million Thomson (Th). We analyze high mass ions with mass-to charge (m/z) ratios ranging from 100 kTh to 1 MTh, including thyroglobulin, alpha-2-macroglobulin, immunoglobulins (e.g., IgG and IgM), and polymer (∼ 940 kTh) ions. Besides, it is also very challenging for ion trap mass spectrometry to detect megadalton ions at low concentrations. By adopting high affinity carboxylated/oxidized detonation nanodiamonds (oxDNDs) to enrich IgM molecules and form antibody-nanodiamond conjugates, we have successfully reached ∼ 5 nM (5 μg/mL) concentration which is better than that by the other techniques.
Collapse
Affiliation(s)
- Avinash A Patil
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Zhe-Xuan Liu
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Yi-Pang Chiu
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Thị Khánh Ly Lại
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan
| | - Szu-Wei Chou
- AcroMass Technologies Inc., Hukou, Hsinchu, 30352, Taiwan
| | - Chun-Yen Cheng
- AcroMass Technologies Inc., Hukou, Hsinchu, 30352, Taiwan
| | - Wen-Min Su
- Department of Life Science, National Dong Hwa University, Hualien, 97401, Taiwan
| | - Hong-Ting Liao
- Department of Life Science, National Dong Hwa University, Hualien, 97401, Taiwan
| | | | - Wen-Ping Peng
- Department of Physics, National Dong Hwa University, Shoufeng, Hualien, 97401, Taiwan.
| |
Collapse
|
2
|
Jiang LX, Plath LD, Halim MA, Friedrich S, Bier ME. Anatomy of Protein Electrospray Ionization Mass Spectra by Superconducting Tunnel Junction Mass and Energy Spectrometry. Anal Chem 2022; 94:5284-5292. [PMID: 35315644 DOI: 10.1021/acs.analchem.1c05074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cryogenic superconducting tunnel junction (STJ) detectors have the advantage of single-particle sensitivity, high quantum efficiency, low noise, and the ability to detect the time and relative impact energy of deposited ions. This makes them attractive for use in mass spectrometry (MS) and as a form of energy spectrometry. STJ cryodetectors have been coupled to time-of-flight (TOF) mass spectrometers equipped with a matrix-assisted laser desorption ionization (MALDI) source and to an electrospray ionization (ESI) TOF mass spectrometer. Here, a lab-made linear quadrupole ion trap (LIT) mass spectrometer system was coupled to an ESI source and a 16-channel Nb-STJ array with improved readout electronics. The goal was to investigate fundamentals of ESI-generated protein ions by further exploiting the advantage of resolving these ions in a third dimension of the relative energy deposited into the STJs. The proteins equine cytochrome c, bovine carbonic anhydrase, bovine serum albumin, and murine immunoglobulin G were studied using this ESI-LIT-STJ-MS instrument. Multiply charged monomers, multimers, and fragments from metastable ions were resolved from monomer peaks by differences in ion deposition energy even when these ions have the same mass-to-charge ratio as the corresponding monomer. The determination of a fragment mass from metastable decomposition is accomplished without knowing the charge state of the fragment. The average charge state of the multimers is reduced with each addition of a protein which is presumed to be a direct reflection of the surface area available for charging. Multiply charged in-source fragments have also been observed and distinguished in the mass spectrum of carbonic anhydrase by using the differences in the energy deposited in the STJs.
Collapse
Affiliation(s)
- Li-Xue Jiang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, United States
| | - Logan D Plath
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, United States
| | - Mohammad A Halim
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, United States
| | - Stephan Friedrich
- Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mark E Bier
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213-2683, United States
| |
Collapse
|
3
|
Plath LD, Abroshan H, Zeng C, Kim HJ, Jin R, Bier ME. Mass Spectrometry of Au 10(4- tert-butylbenzenethiolate) 10 Nanoclusters Using Superconducting Tunnel Junction Cryodetection Reveals Distinct Metastable Fragmentation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:521-529. [PMID: 35147432 DOI: 10.1021/jasms.1c00346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cryodetection mass spectrometry (MS) was used to study the Au10(TBBT)10 (TBBT = 4-tert-butylbenzenethiolate) catenane nanocluster. The matrix-assisted laser desorption ionization (MALDI) process generates distinct fragments that can be arranged into two distinct regimes: (i) in-source fragmentation, which occurs rapidly in a relatively short (<170 ns) time frame, and (ii) metastable fragmentation, which occurs postacceleration during a time-of-flight (TOF) mass analysis over a longer time frame (>170 ns-250 μs). Using MALDI-TOF MS with superconducting tunnel junction (STJ) cryodetection, distinct metastable nanocluster fragments were resolved at lower energies deposited into the detector. The results also demonstrated that STJ cryodetection MS can be used to acquire multiple (>10), simultaneous tandem mass spectra in a single experiment. Simulated fragmentation of the Au10 nanocluster using ab initio molecular dynamics (AIMD) revealed the different fragmentation processes and confirmed the MS results. Using both the empirical MS data and AIMD calculations, fragmentation pathways are proposed for Au10(TBBT)10, which terminate with two small, stable ringed species.
Collapse
Affiliation(s)
- Logan D Plath
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Molecular Analysis, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hadi Abroshan
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chenjie Zeng
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hyung J Kim
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongchao Jin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Mark E Bier
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
- Center for Molecular Analysis, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
4
|
Brais CJ, Ibañez JO, Schwartz AJ, Ray SJ. RECENT ADVANCES IN INSTRUMENTAL APPROACHES TO TIME-OF-FLIGHT MASS SPECTROMETRY. MASS SPECTROMETRY REVIEWS 2021; 40:647-669. [PMID: 32779281 DOI: 10.1002/mas.21650] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/25/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Time-of-flight mass spectrometry (TOFMS) is one of the simplest and most powerful approaches for mass spectrometry. Realization of the advantages inherent in TOFMS requires innovation in the theory and practice of the technique. Instrumental developments, in turn, create new capabilities that enable applications in chemical measurement. This review focuses on the recent advances in TOFMS instrumentation. New strategies for ion acceleration, multiplexed detection, miniaturized TOFMS instruments, approaches to extend the length of ion flight, and novel ion detection technologies are reviewed. Techniques that change the basic paradigm of TOFMS by measuring m/z based on ion flight distance are considered, as are applications at the frontiers of instrumental performance. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Christopher J Brais
- Department of Chemistry, University at Buffalo, Buffalo, New York, 14260, USA
| | | | | | - Steven J Ray
- Department of Chemistry, University at Buffalo, Buffalo, New York, 14260, USA
| |
Collapse
|
5
|
Huang X, Liu H, Lu D, Lin Y, Liu J, Liu Q, Nie Z, Jiang G. Mass spectrometry for multi-dimensional characterization of natural and synthetic materials at the nanoscale. Chem Soc Rev 2021; 50:5243-5280. [PMID: 33656017 DOI: 10.1039/d0cs00714e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Characterization of materials at the nanoscale plays a crucial role in in-depth understanding the nature and processes of the substances. Mass spectrometry (MS) has characterization capabilities for nanomaterials (NMs) and nanostructures by offering reliable multi-dimensional information consisting of accurate mass, isotopic, and molecular structural information. In the last decade, MS has emerged as a powerful nano-characterization technique. This review comprehensively summarizes the capabilities of MS in various aspects of nano-characterization that greatly enrich the toolbox of nano research. Compared with other characterization techniques, MS has unique capabilities for real-time monitoring and tracking reaction intermediates and by-products. Moreover, MS has shown application potential in some novel aspects, such as MS imaging of the biodistribution and fate of NMs in animals and humans, stable isotopic tracing of NMs, and risk assessment of NMs, which deserve update and integration into the current knowledge framework of nano-characterization.
Collapse
Affiliation(s)
- Xiu Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yue Lin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Zongxiu Nie
- University of Chinese Academy of Sciences, Beijing 100049, China and Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Qin X, Xu H, Zhang G, Wang J, Wang Z, Zhao Y, Wang Z, Tan T, Bockstaller MR, Zhang L, Matyjaszewski K. Enhancing the Performance of Rubber with Nano ZnO as Activators. ACS APPLIED MATERIALS & INTERFACES 2020; 12:48007-48015. [PMID: 33040537 DOI: 10.1021/acsami.0c15114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The vulcanization of rubber is a chemical process to improve the mechanical properties by cross-linking unsaturated polymer chains. Zinc oxide (ZnO) acts as an activator, boosting the rubbers' sulfur vulcanization. Maintaining the level of ZnO content in the rubber compounds as low as possible is desirable, not only for economic reasons but also to reduce the environmental footprint of the process. In this contribution, octylamine (OA) capped ZnO nanoparticles (5 nm diameter), prepared through a thermal decomposition method, were demonstrated to be efficient activators for the sulfur vulcanization of natural rubber, enabling the reduction of the required amount of ZnO as compared to commercial systems. The effect of different ZnO activators (OA capped ZnO/commercial indirect process ZnO) on the curing characteristics, cross-linking densities, and mechanical performance, as well as the thermal behavior of rubber compounds, were investigated. Compared to the commercial indirect process ZnO, OA capped ZnO nanoparticles not only effectively enhanced the curing efficiency of natural rubber but also improved the mechanical performance of the composites after vulcanization. This was interpreted as, by applying the OA capped ZnO nanoparticles, the ZnO levels in rubber compounding were significantly reduced under the industrial vulcanization condition (151 °C, 30 min).
Collapse
Affiliation(s)
- Xuan Qin
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Haoshu Xu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ganggang Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiadong Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhao Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuqi Zhao
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Zongyu Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Tianwei Tan
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Michael R Bockstaller
- Department of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- Key Laboratory of Beijing City for Preparation and Processing of Novel Polymer Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
7
|
Sipe DM, Plath LD, Aksenov AA, Feldman JS, Bier ME. Characterization of Mega-Dalton-Sized Nanoparticles by Superconducting Tunnel Junction Cryodetection Mass Spectrometry. ACS NANO 2018; 12:2591-2602. [PMID: 29481053 DOI: 10.1021/acsnano.7b08541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The characterization of nanomaterials is critical to understand the size/structure-dependent properties of these particles. In this report, a form of heavy ion mass spectrometry, namely, superconducting tunnel junction (STJ) cryodetection mass spectrometry (MS) is used to characterize quantum dot semiconductor nanocrystals and gold nanoparticles. The nanoparticles studied ranged in mass from 200 kDa to >1.5 MDa and included lead sulfide quantum dots, various cadmium selenide and/or telluride-based core-shell quantum dots coated with different ligands, and gold nanoparticles. Nanoparticles were ionized by both matrix-assisted laser desorption ionization (MALDI) and laser desorption ionization (LDI), shot with an aimed ion gun into a flight tube, mass separated by time-of-flight (TOF), and detected by an energy-sensitive STJ cryodetector. STJ cryodetection MS can be used to analyze intact heterogeneous nanoparticles, allowing determination of average particle mass, dispersity, and ligand loading. Some nanoparticles, however, do undergo fragmentation during the MALDI or LDI-TOF mass analyses. The measurement of the energy deposited into the detector was found to be different for different types of particles. Metastable fragments from these nanoparticles were observed at lower energies. The lower energies deposited for metastable fragments can provide insight into the stability and surface compositions of these materials. Cadmium selenide core-shell quantum dots (655 nm emission) conjugated to biomacromolecules, such as cholera toxin B and human serum transferrin, were also analyzed. When compared to unconjugated particles by mass, it was determined that ∼96 cholera toxin B and ∼14 transferrin proteins were attached to the surface of these nanoparticles.
Collapse
Affiliation(s)
- David M Sipe
- Center for Molecular Analysis, Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213-2683 United States
| | - Logan D Plath
- Center for Molecular Analysis, Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213-2683 United States
| | - Alexander A Aksenov
- Center for Molecular Analysis, Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213-2683 United States
| | - Jonathan S Feldman
- Center for Molecular Analysis, Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213-2683 United States
| | - Mark E Bier
- Center for Molecular Analysis, Department of Chemistry , Carnegie Mellon University , Pittsburgh , Pennsylvania 15213-2683 United States
| |
Collapse
|