1
|
Huang R, Zhu W, Xu Z, Chen J, Jiang B, Chen H, Chen W. Accurate Retention Time Prediction Based on Monolinked Peptide Information to Confidently Identify Cross-Linked Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2410-2416. [PMID: 34320809 DOI: 10.1021/jasms.1c00120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cross-linking mass spectrometry methods have not been successfully applied to protein-protein interaction discovery at a proteome-wide level mainly due to the computation complexity (O (n2)) issue. In a previous report, we proposed a decision tree searching strategy (DTSS), which can reduce complexity by orders of magnitude. In this study, we further found that the monolinked peptides carry out the information on the retention time of the corresponding cross-linked pairs; therefore, the retention time of cross-linked peptide pairs can be predicted accurately. By utilizing the retention time as an extra filter, the false positive rate can be reduced by around 86% with a sensitivity loss of 10%. The method combined with DTSS (T-DTSS) not only benefits improving identification confidence but also leads to lower cutoff scores and facilitates substantially increasing inter-cross-link identification. T-DTSS was successfully applied to the identification of inter-cross-links obtained from Escherichia coli cell lysate cross-linked by a newly synthesized enrichable cross-linker, pDSBE. The approach can be applicable to both cleavable and noncleavable methods.
Collapse
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Wei Zhu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Zili Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Jiakang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wenzhang Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|
2
|
Chakrabarty JK, Bugarin A, Chowdhury SM. Evaluating the performance of an ETD-cleavable cross-linking strategy for elucidating protein structures. J Proteomics 2020; 225:103846. [PMID: 32480079 DOI: 10.1016/j.jprot.2020.103846] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 01/08/2023]
Abstract
Chemical cross-linking is a powerful strategy for elucidating the structures of protein or protein complexes. The distance constraints obtained from cross-linked peptides represent the three-dimensional structures of the protein complexes. Unfortunately, structural analysis using cross-linking approach demands a significant amount of data to elucidate protein structures. This requires the development of several cleavable cross-linkers with different range of spacer chains. An Electron Transfer Dissociation (ETD) tandem mass spectrometry cleavable bond hydrazone was reported. Its fragmentation with conjugated peptides showed promise for the development of a new ETD cleavable cross-linker. However, no cross-linker was developed utilizing this ETD cleavable bond. For the first time, we attempted to develop an ETD cleavable cross-linker utilizing a hydrazone bond. We overcome the pitfall for the synthesis of this cross-linker and an easy synthesis scheme is reported. In this report, we evaluated the performance of this cross-linker called Hydrazone Incorporated ETD cleavable cross-linker (HI-ETD-XL) in model peptides and proteins. The characteristic fragmentation behavior of HI-ETD-XL during electron transfer dissociation and subsequent sequence identification of the peptide fragment ions by tandem mass spectrometry allowed the identification of cross-linked peptides unambiguously. We believe the availability of this ETD cleavable cross-linker will advance structural proteomics research significantly. SIGNIFICANCE: Many cellular processes rely on the structural dynamics of protein complexes. The detailed knowledge of the structure and dynamics of protein complexes is crucial for understanding their biological functions and regulations. However, most of the structure of these multiprotein entities remain uncharacterized and sometimes is very challenging to reveal with biophysical techniques alone. Chemical cross-linking combined with mass spectrometry (MS) has proven to be a dependable strategy in structural proteomics field. However, data complexity and false identifications are significant hindrances for unambiguous identification of cross-linked peptides. Confident identifications demand structural studies with cross-linkers with different properties and variable spacer chain lengths. This new ETD cleavable cross-linking workflow will provide additional confidence to overcome these drawbacks and allow us to pinpoint cross-linked peptides confidently.
Collapse
Affiliation(s)
| | - Alejandro Bugarin
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, USA; Department of Chemistry & Physics, Florida Gulf Coast University, FL, USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, TX, USA.
| |
Collapse
|
3
|
Mass spectrometry-based methods for structural biology on a proteome-wide scale. Biochem Soc Trans 2020; 48:945-954. [DOI: 10.1042/bst20190794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 11/17/2022]
Abstract
Mass spectrometry (MS) has long been used to study proteins mainly via sequence identification and quantitation of expression abundance. In recent years, MS has emerged as a tool for structural biology. Intact protein structural analysis has been enabled by the development of methods such as native MS, top-down proteomics, and ion mobility MS. Other MS-based structural methods include affinity purification MS, chemical cross-linking, and protein footprinting. These methods have enabled the study of protein–protein and protein–ligand interactions and regions of conformational change. The coupling of MS with liquid chromatography has permitted the analysis of complex samples. This bottom-up proteomics workflow enables the study of protein structure in the native cellular environment and provides structural information across the proteome. It has been demonstrated that the crowded environment of the cell affects protein binding interactions and affinities. Performing studies in this complex environment is essential for understanding the functional roles of proteins. MS-based structural methods permit analysis of samples such as cell lysates, intact cells, and tissue to provide a more physiological view of protein structure. This mini-review discusses the various MS-based methods that can be used for proteome-wide structural studies and highlights some of their application.
Collapse
|
4
|
Mendes ML, Fischer L, Chen ZA, Barbon M, O'Reilly FJ, Giese SH, Bohlke‐Schneider M, Belsom A, Dau T, Combe CW, Graham M, Eisele MR, Baumeister W, Speck C, Rappsilber J. An integrated workflow for crosslinking mass spectrometry. Mol Syst Biol 2019; 15:e8994. [PMID: 31556486 PMCID: PMC6753376 DOI: 10.15252/msb.20198994] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 11/09/2022] Open
Abstract
We present a concise workflow to enhance the mass spectrometric detection of crosslinked peptides by introducing sequential digestion and the crosslink identification software xiSEARCH. Sequential digestion enhances peptide detection by selective shortening of long tryptic peptides. We demonstrate our simple 12-fraction protocol for crosslinked multi-protein complexes and cell lysates, quantitative analysis, and high-density crosslinking, without requiring specific crosslinker features. This overall approach reveals dynamic protein-protein interaction sites, which are accessible, have fundamental functional relevance and are therefore ideally suited for the development of small molecule inhibitors.
Collapse
Affiliation(s)
- Marta L Mendes
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Present address:
Quantitative Biology UnitLuxembourg Institute of HealthLuxembourgLuxembourg
| | - Lutz Fischer
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Zhuo A Chen
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Marta Barbon
- MRC London Institute of Medical Sciences (LMS)LondonUK
- DNA Replication GroupFaculty of MedicineInstitute of Clinical Sciences (ICS)Imperial College LondonLondonUK
| | - Francis J O'Reilly
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | - Sven H Giese
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
| | | | - Adam Belsom
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Therese Dau
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Colin W Combe
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Martin Graham
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| | - Markus R Eisele
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Wolfgang Baumeister
- Department of Molecular Structural BiologyMax Planck Institute of BiochemistryMartinsriedGermany
| | - Christian Speck
- MRC London Institute of Medical Sciences (LMS)LondonUK
- DNA Replication GroupFaculty of MedicineInstitute of Clinical Sciences (ICS)Imperial College LondonLondonUK
| | - Juri Rappsilber
- BioanalyticsInstitute of BiotechnologyTechnische Universität BerlinBerlinGermany
- Wellcome Centre for Cell BiologyUniversity of EdinburghEdinburghUK
| |
Collapse
|
5
|
Zhao B, Reilly CP, Reilly JP. ETD-Cleavable Linker for Confident Cross-linked Peptide Identifications. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1631-1642. [PMID: 31098958 DOI: 10.1007/s13361-019-02227-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Peptide cross-links formed using the homobifunctional-linker diethyl suberthioimidate (DEST) are shown to be ETD-cleavable. DEST has a spacer arm consisting of a 6-carbon alkyl chain and it cleaves at the amidino groups created upon reaction with primary amines. In ETD MS2 spectra, DEST cross-links can be recognized based on mass pairs consisting of peptide-NH2• and peptide+linker+NH3 ions, and backbone cleavages are more equally distributed over the two constituent peptides compared with collisional activation. Dead ends that are often challenging to distinguish from cross-links are diagnosed by intense reporter ions. ETD mass pairs can be used in MS3 experiments to confirm cross-link identifications. These features provide a simple but reliable approach to identify cross-links that should facilitate studies of protein complexes.
Collapse
Affiliation(s)
- Bingqing Zhao
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - Colin P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, IN, 47405, USA.
| |
Collapse
|
6
|
Iacobucci C, Piotrowski C, Rehkamp A, Ihling CH, Sinz A. The First MS-Cleavable, Photo-Thiol-Reactive Cross-Linker for Protein Structural Studies. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:139-148. [PMID: 29679287 DOI: 10.1007/s13361-018-1952-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 06/08/2023]
Abstract
Cleavable cross-linkers are gaining increasing importance for chemical cross-linking/mass spectrometry (MS) as they permit a reliable and automated data analysis in structural studies of proteins and protein assemblies. Here, we introduce 1,3-diallylurea (DAU) as the first CID-MS/MS-cleavable, photo-thiol-reactive cross-linker. DAU is a commercially available, inexpensive reagent that efficiently undergoes an anti-Markovnikov hydrothiolation with cysteine residues in the presence of a radical initiator upon UV-A irradiation. Radical cysteine cross-linking proceeds via an orthogonal "click reaction" and yields stable alkyl sulfide products. DAU reacts at physiological pH and cross-linking reactions with peptides, and proteins can be performed at temperatures as low as 4 °C. The central urea bond is efficiently cleaved upon collisional activation during tandem MS experiments generating characteristic product ions. This improves the reliability of automated cross-link identification. Different radical initiators have been screened for the cross-linking reaction of DAU using the thiol-containing compounds cysteine and glutathione. Our concept has also been exemplified for the biologically relevant proteins bMunc13-2 and retinal guanylyl cyclase-activating protein-2. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.
| | - Christine Piotrowski
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Anne Rehkamp
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, 06120, Halle (Saale), Germany.
| |
Collapse
|
7
|
Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology. Nat Struct Mol Biol 2018; 25:1000-1008. [PMID: 30374081 DOI: 10.1038/s41594-018-0147-0] [Citation(s) in RCA: 225] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/19/2018] [Indexed: 01/11/2023]
Abstract
Over the past decade, cross-linking mass spectrometry (CLMS) has developed into a robust and flexible tool that provides medium-resolution structural information. CLMS data provide a measure of the proximity of amino acid residues and thus offer information on the folds of proteins and the topology of their complexes. Here, we highlight notable successes of this technique as well as common pipelines. Novel CLMS applications, such as in-cell cross-linking, probing conformational changes and tertiary-structure determination, are now beginning to make contributions to molecular biology and the emerging fields of structural systems biology and interactomics.
Collapse
|
8
|
Zhang X, Wang JH, Tan D, Li Q, Li M, Gong Z, Tang C, Liu Z, Dong MQ, Lei X. Carboxylate-Selective Chemical Cross-Linkers for Mass Spectrometric Analysis of Protein Structures. Anal Chem 2018; 90:1195-1201. [DOI: 10.1021/acs.analchem.7b03789] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xiaoyun Zhang
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jian-Hua Wang
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Dan Tan
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Qiang Li
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| | - Maodong Li
- Center
for Quantitative Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhou Gong
- CAS
Key Laboratory of Magnetic Resonance in Biological Systems, State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Chun Tang
- CAS
Key Laboratory of Magnetic Resonance in Biological Systems, State
Key Laboratory of Magnetic Resonance and Atomic Molecular Physics,
National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics of the Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China
| | - Zhirong Liu
- Center
for Quantitative Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng-Qiu Dong
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
- National Institute of Biological Sciences (NIBS), Beijing 102206, China
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering,
Synthetic and Functional Biomolecules Center, and Peking-Tsinghua
Center for Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Yu C, Huang L. Cross-Linking Mass Spectrometry: An Emerging Technology for Interactomics and Structural Biology. Anal Chem 2018; 90:144-165. [PMID: 29160693 PMCID: PMC6022837 DOI: 10.1021/acs.analchem.7b04431] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, CA 92697
| |
Collapse
|
10
|
Iacobucci C, Hage C, Schäfer M, Sinz A. A Novel MS-Cleavable Azo Cross-Linker for Peptide Structure Analysis by Free Radical Initiated Peptide Sequencing (FRIPS). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:2039-2053. [PMID: 28717933 DOI: 10.1007/s13361-017-1744-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/13/2017] [Accepted: 06/15/2017] [Indexed: 06/07/2023]
Abstract
The chemical cross-linking/mass spectrometry (MS) approach is a growing research field in structural proteomics that allows gaining insights into protein conformations. It relies on creating distance constraints between cross-linked amino acid side chains that can further be used to derive protein structures. Currently, the most urgent task for designing novel cross-linking principles is an unambiguous and automated assignment of the created cross-linked products. Here, we introduce the homobifunctional, amine-reactive, and water soluble cross-linker azobisimidoester (ABI) as a prototype of a novel class of cross-linkers. The ABI-linker possesses an innovative modular scaffold combining the benefits of collisional activation lability with open shell chemistry. This MS-cleavable cross-linker can be efficiently operated via free radical initiated peptide sequencing (FRIPS) in positive ionization mode. Our proof-of-principle study challenges the gas phase behavior of the ABI-linker for the three amino acids, lysine, leucine, and isoleucine, as well as the model peptide thymopentin. The isomeric amino acids leucine and isoleucine could be discriminated by their characteristic side chain fragments. Collisional activation experiments were conducted via positive electrospray ionization (ESI) on two Orbitrap mass spectrometers. The ABI-mediated formation of odd electron product ions in MS/MS and MS3 experiments was evaluated and compared with a previously described azo-based cross-linker. All cross-linked products were amenable to automated analysis by the MeroX software, underlining the future potential of the ABI-linker for structural proteomics studies. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Claudio Iacobucci
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany.
| | - Christoph Hage
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany
| | - Mathias Schäfer
- Department of Chemistry, Institute of Organic Chemistry, University of Cologne, Greinstr. 4, D-50939, Kӧln, Germany
| | - Andrea Sinz
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Str. 4, D-06120, Halle (Saale), Germany.
| |
Collapse
|