1
|
Chung HH, Huang P, Chen CL, Lee C, Hsu CC. Next-generation pathology practices with mass spectrometry imaging. MASS SPECTROMETRY REVIEWS 2023; 42:2446-2465. [PMID: 35815718 DOI: 10.1002/mas.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Mass spectrometry imaging (MSI) is a powerful technique that reveals the spatial distribution of various molecules in biological samples, and it is widely used in pathology-related research. In this review, we summarize common MSI techniques, including matrix-assisted laser desorption/ionization and desorption electrospray ionization MSI, and their applications in pathological research, including disease diagnosis, microbiology, and drug discovery. We also describe the improvements of MSI, focusing on the accumulation of imaging data sets, expansion of chemical coverage, and identification of biological significant molecules, that have prompted the evolution of MSI to meet the requirements of pathology practices. Overall, this review details the applications and improvements of MSI techniques, demonstrating the potential of integrating MSI techniques into next-generation pathology practices.
Collapse
Affiliation(s)
- Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| | - Chuping Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
2
|
Li H, Wu R, Hu Q, Chen X, Dominic Chan TW. A Matrix Sublimation Device with an Integrated Solvent Nebulizer for MALDI-MSI. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:11-16. [PMID: 34939792 DOI: 10.1021/jasms.1c00335] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The current matrix deposition methods in MALDI-mass spectrometry imaging (MALDI-MSI) face technical problems related to the inhomogeneous distribution of crystals and the low analyte extraction and cocrystallization efficiency. In this work, an integrated matrix sublimation device with synchronous solvent nebulization was developed for MALDI-MSI. Droplets of solvents were directly introduced into the chamber of the sublimator by using a miniaturized ultrasonic nebulizer unit. The synchronous and asynchronous working modes of solvent nebulization and matrix sublimation were systematically investigated. Imaging of both protein and small metabolite distributions in mouse brain tissue sections was successfully performed using the developed matrix deposition device. The sensitivity and quality of the images were clearly improved in synchronous mode compared with those of the conventional spray and sublimation methods. These results demonstrate that the integrated device with both solvent nebulization and matrix sublimation is a useful tool in MALDI-MSI applications.
Collapse
Affiliation(s)
- Huizhi Li
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, P.R. China
| | - Ri Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| | - Qiongzheng Hu
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, P.R. China
| | - Xiangfeng Chen
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Centre, Qilu University of Technology (Shandong Academy of Sciences), 19th Keyuan Road, Jinan, Shandong 250014, P.R. China
| | - T-W Dominic Chan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong SAR, P.R. China
| |
Collapse
|
3
|
[Mass spectrometry imaging technology and its application in breast cancer research]. Se Pu 2021; 39:578-587. [PMID: 34227318 PMCID: PMC9404019 DOI: 10.3724/sp.j.1123.2020.10005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
乳腺癌是女性最常见的恶性肿瘤,其发病率在世界范围内呈现上升趋势,是威胁女性健康的重要疾病之一。随着现代医学技术的快速发展,早期有效的诊断和筛查方法能够改善乳腺癌患者生存率和提高其生活质量。由于乳腺癌肿瘤具有非常显著的异质性,这对于诊断和筛查带来了较大困难,亟须在肿瘤演进时间信息中,继续引入生物分子的空间信息,从而对其异质性、肿瘤微环境等进行准确的追踪。质谱成像技术,可在免标记的前提下利用离子质荷比的特性发现生物组织中的各种分子,并研究这些分子的时间和空间信息,对其进行准确的定性、定量和空间定位。目前,通过质谱成像技术可直接获取药物及其代谢物、内源性代谢物、脂质、多肽和蛋白质等在组织中的空间分布信息,为肿瘤分子分型诊断和确认以及相关抗肿瘤药物的筛选提供了新的思路和研究方向。该综述以乳腺癌相关的生物样品制备和研究进展为主要内容,从小分子样本、大分子样本、石蜡包埋样本、基质喷涂方式、常用离子源等方面阐述质谱成像中样本制备的重要性以及样品制备过程中存在的难点问题。同时,以细胞模型、动物模型和临床肿瘤标本为研究对象,汇总了质谱成像技术在乳腺癌方面的应用进展,并进行了展望,为开展癌症精准分型研究和药物药效的快速筛查提供了重要依据。
Collapse
|
4
|
Chen CL, Kuo TH, Chung HH, Huang P, Lin LE, Hsu CC. Remodeling nanoDESI Platform with Ion Mobility Spectrometry to Expand Protein Coverage in Cancerous Tissue. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:653-660. [PMID: 33507077 DOI: 10.1021/jasms.0c00354] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanospray desorption electrospray ionization mass spectrometry is an ambient ionization technique that is capable of mapping proteins in tissue sections. However, high-abundant molecules or isobaric interference in biological samples hampers its broad applications in probing low-abundant proteins. To address this challenge, herein we demonstrated an integrated module that coupled pneumatic-assisted nanospray desorption electrospray ionization mass spectrometry with high-field asymmetric ion mobility spectrometry. Using this module to analyze mouse brain sections, the protein coverage was significantly increased. This improvement allowed the mapping of low-abundant proteins in tissue sections with a 5 μm spatial resolution enabled by computationally assisted fusion with optical microscopic images. Moreover, the module was successfully applied to characterize melanoma in skin tissues based on the enhanced protein profiles. The results suggested that this integrating module will be potentially applied to discover novel proteins in cancers.
Collapse
Affiliation(s)
- Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Ting-Hao Kuo
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Li-En Lin
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 106216, Taiwan
| |
Collapse
|
5
|
Huang P, Huang CY, Lin TC, Lin LE, Yang E, Lee C, Hsu CC, Chou PT. Toward the Rational Design of Universal Dual Polarity Matrix for MALDI Mass Spectrometry. Anal Chem 2020; 92:7139-7145. [PMID: 32314914 DOI: 10.1021/acs.analchem.0c00570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A series of novel anthranilic acid derivatives I-IV, of which COOH-NH2 (I) and COOH-NHMe (IV) are endowed with acid and base bifunctionality, were designed and synthesized for matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry applications in dual polarity molecular imaging of biological samples, particularly for lipids. The heat of protonation, deprotonation, and proton transfer reaction as well as the capability of analyzing biomolecules in both positive and negative ion modes for I-IV were systematically investigated under standard 355 nm laser excitation. The results indicate correlation between dual polarity and acid-base property. Further, COOH-NHMe (IV) showed a unique performance and was successfully applied as the matrix for MALDI-TOF mass spectrometry imaging (MSI) for studying the mouse brain. Our results demonstrate the superiority of COOH-NHMe (IV) in detecting more lipid and protein species compared to commercially available matrices. Moreover, MALDI-TOF MSI results were obtained for lipid distributions, making COOH-NHMe (IV) a potential next generation universal matrix.
Collapse
Affiliation(s)
- Penghsuan Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Chun-Ying Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Ta-Chun Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Li-En Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Ethan Yang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.).,Department of Chemistry, Université de Montréal, Montreal, Quebec Canada H3T 1J4
| | - Chuping Lee
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.).,Department of Applied Chemistry, National Chiayi University, Chiayi City 60004, Taiwan (R.O.C.)
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan (R.O.C.)
| |
Collapse
|
6
|
Wang K, Donnarumma F, Pettit ME, Szot CW, Solouki T, Murray KK. MALDI imaging directed laser ablation tissue microsampling for data independent acquisition proteomics. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4475. [PMID: 31726477 DOI: 10.1002/jms.4475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/25/2019] [Accepted: 11/07/2019] [Indexed: 06/10/2023]
Abstract
A multimodal workflow for mass spectrometry imaging was developed that combines MALDI imaging with protein identification and quantification by liquid chromatography tandem mass spectrometry (LC-MS/MS). Thin tissue sections were analyzed by MALDI imaging, and the regions of interest (ROI) were identified using a smoothing and edge detection procedure. A midinfrared laser at 3-μm wavelength was used to remove the ROI from the brain tissue section after MALDI mass spectrometry imaging (MALDI MSI). The captured material was processed using a single-pot solid-phase-enhanced sample preparation (SP3) method and analyzed by LC-MS/MS using ion mobility (IM) enhanced data independent acquisition (DIA) to identify and quantify proteins; more than 600 proteins were identified. Using a modified database that included isoform and the post-translational modifications chain, loss of the initial methionine, and acetylation, 14 MALDI MSI peaks were identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of the identified proteins was achieved through an evolutionary relationships classification system.
Collapse
Affiliation(s)
- Kelin Wang
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Fabrizio Donnarumma
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Michael E Pettit
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, United States
| | - Carson W Szot
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| | - Touradj Solouki
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, United States
| | - Kermit K Murray
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, 70803, United States
| |
Collapse
|
7
|
Lin LE, Chen CL, Huang YC, Chung HH, Lin CW, Chen KC, Peng YJ, Ding ST, Wang MY, Shen TL, Hsu CC. Precision biomarker discovery powered by microscopy image fusion-assisted high spatial resolution ambient ionization mass spectrometry imaging. Anal Chim Acta 2019; 1100:75-87. [PMID: 31987155 DOI: 10.1016/j.aca.2019.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Mass spectrometry imaging (MSI) using the ambient ionization technique enables a direct chemical investigation of biological samples with minimal sample pretreatment. However, detailed morphological information of the sample is often lost due to its limited spatial resolution. In this study, predictive high-resolution molecular imaging was produced by the fusion of ambient ionization MSI with optical microscopy of routine hematoxylin and eosin (H&E) staining. Specifically, desorption electrospray ionization (DESI) and nanospray desorption electrospray ionization (nanoDESI) mass spectrometry were employed to visualize lipid and protein species on mice tissue sections. The resulting molecular distributions obtained by ambient ionization MSI-microscopy fusion were verified with matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MSI and immunohistochemistry (IHC) staining. Label-free molecular imaging with 5-μm spatial resolution can be acquired using DESI and nanoDESI, whereas the typical spatial resolution of ambient ionization MSI was ∼100 μm. In this regard, sharpened molecular histology of tissue sections was achieved, providing complementary references to the pathology. Such a multi-modal integration enables the discovery of potential tumor biomarkers. After image fusion, more than a dozen potential biomarkers on a metastatic mouse lung tissue section and Luminal B breast tumor tissue section were identified.
Collapse
Affiliation(s)
- Li-En Lin
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Ying-Chen Huang
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Hsin-Hsiang Chung
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Chiao-Wei Lin
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Ko-Chien Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yu-Ju Peng
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Shih-Torng Ding
- Department of Animal Science and Technology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Ming-Yang Wang
- National Taiwan University Hospital, No.7, Zhong Shan South Rd., Taipei, 10002, Taiwan
| | - Tang-Long Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Wang F, Yang P, Choi JS, Antovski P, Zhu Y, Xu X, Kuo TH, Lin LE, Kim DNH, Huang PC, Xu H, Lee CF, Wang C, Hsu CC, Chen K, Weiss PS, Tseng HR. Cross-Linked Fluorescent Supramolecular Nanoparticles for Intradermal Controlled Release of Antifungal Drug-A Therapeutic Approach for Onychomycosis. ACS NANO 2018; 12:6851-6859. [PMID: 29851454 DOI: 10.1021/acsnano.8b02099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The existing approaches to onychomycosis demonstrate limited success since the commonly used oral administration and topical cream only achieve temporary effective drug concentration at the fungal infection sites. An ideal therapeutic approach for onychomycosis should have (i) the ability to introduce antifungal drugs directly to the infected sites; (ii) finite intradermal sustainable release to maintain effective drug levels over prolonged time; (iii) a reporter system for monitoring maintenance of drug level; and (iv) minimum level of inflammatory responses at or around the fungal infection sites. To meet these expectations, we introduced ketoconazole-encapsulated cross-linked fluorescent supramolecular nanoparticles (KTZ⊂c-FSMNPs) as an intradermal controlled release solution for treating onychomycosis. A two-step synthetic approach was adopted to prepare a variety of KTZ⊂c-FSMNPs. Initial characterization revealed that 4800 nm KTZ⊂c-FSMNPs exhibited high KTZ encapsulation efficiency/capacity, optimal fluorescent property, and sustained KTZ release profile. Subsequently, 4800 nm KTZ⊂c-FSMNPs were chosen for in vivo studies using a mouse model, wherein the KTZ⊂c-FSMNPs were deposited intradermally via tattoo. The results obtained from (i) in vivo fluorescence imaging, (ii) high-performance liquid chromatography quantification of residual KTZ, (iii) matrix-assisted laser desorption/ionization mass spectrometry imaging mapping of KTZ distribution in intradermal regions around the tattoo site, and (iv) histology for assessment of local inflammatory responses and biocompatibility, suggest that 4800 nm KTZ⊂c-FSMNPs can serve as an effective treatment for onychomycosis.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200433 , China
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095-1770 , United States
| | - Peng Yang
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095-1770 , United States
| | - Jin-Sil Choi
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095-1770 , United States
| | - Petar Antovski
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095-1770 , United States
| | - Yazhen Zhu
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095-1770 , United States
| | - Xiaobin Xu
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
- ⊥ School of Materials Science and Engineering , Nanyang Technological University , 50 Nanyang Avenue , 639798 , Singapore
| | - Ting-Hao Kuo
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Li-En Lin
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Diane N H Kim
- Department of Bioengineering , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Pin-Cheng Huang
- Department of Chemistry, Research Center for Sustainable Energy and Nanotechnology, Innovation and Development Center of Sustainable Agriculture , National Chung Hsing University (NCHU) , 145 Xingda Road, South Dist. , Taichung 402 , Taiwan
| | - Haoxiang Xu
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095-1770 , United States
- Department of Dermatology, Institute of Dermatology , Peking Union Medical College & Chinese Academy of Medical Sciences , 12 Jiangwangmiao Street, Xuanwu Dist. , Nanjing 210042 , China
| | - Chin-Fa Lee
- Department of Chemistry, Research Center for Sustainable Energy and Nanotechnology, Innovation and Development Center of Sustainable Agriculture , National Chung Hsing University (NCHU) , 145 Xingda Road, South Dist. , Taichung 402 , Taiwan
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science , Fudan University , Shanghai 200433 , China
| | - Cheng-Chih Hsu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine , University of Southern California , Los Angeles , California 90033-9061 , United States
| | - Paul S Weiss
- Department of Chemistry and Biochemistry, Department of Materials Science and Engineering, California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095 , United States
| | - Hsian-Rong Tseng
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging (CIMI), California NanoSystems Institute (CNSI) , University of California, Los Angeles , Los Angeles , California 90095-1770 , United States
| |
Collapse
|