1
|
Mohr JP, Caudal A, Tian R, Bruce JE. Multidimensional Cross-Linking and Real-Time Informatics for Multiprotein Interaction Studies. J Proteome Res 2024; 23:107-116. [PMID: 38147001 PMCID: PMC10906106 DOI: 10.1021/acs.jproteome.3c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Chemical cross-linking combined with mass spectrometry is a technique used to study protein structures and identify protein complexes. Traditionally, chemical cross-linkers contain two reactive groups, allowing them to covalently bond a pair of proximal residues, either within a protein or between two proteins. The output of a cross-linking experiment is a list of interacting site pairs that provide structural constraints for modeling of new structures and complexes. Due to the binary reactive nature of cross-linking reagents, only pairs of interacting sites can be directly observed, and assembly of higher-order structures typically requires prior knowledge of complex composition or iterative docking to produce a putative model. Here, we describe a new tetrameric cross-linker bearing four amine-reactive groups, allowing it to covalently link up to four proteins simultaneously and a real-time instrument method to facilitate the identification of these tetrameric cross-links. We applied this new cross-linker to isolated mitochondria and identified a number of higher-order cross-links in various OXPHOS complexes and ATP synthase, demonstrating its utility in characterizing complex interfaces. We also show that higher-order cross-links can be used to effectively filter models of large protein assemblies generated by using Alphafold. Higher-dimensional cross-linking provides a new avenue for characterizing multiple protein interfaces, even in complex samples such as intact mitochondria.
Collapse
Affiliation(s)
- Jared P Mohr
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Arianne Caudal
- Department of Biochemistry, University of Washington, Seattle, Washington 98105, United States
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington 98109, United States
| | - Rong Tian
- Department of Biochemistry, University of Washington, Seattle, Washington 98105, United States
- Mitochondria and Metabolism Center, Department of Anesthesiology & Pain Medicine, University of Washington, Seattle, Washington 98109, United States
| | - James E Bruce
- Department of Genome Sciences, University of Washington, Seattle, Washington 98105, United States
| |
Collapse
|
2
|
Degliesposti G. Probing Protein Complexes Composition, Stoichiometry, and Interactions by Peptide-Based Mass Spectrometry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:41-57. [PMID: 38507199 DOI: 10.1007/978-3-031-52193-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The characterization of a protein complex by mass spectrometry can be conducted at different levels. Initial steps regard the qualitative composition of the complex and subunit identification. After that, quantitative information such as stoichiometric ratios and copy numbers for each subunit in a complex or super-complex is acquired. Peptide-based LC-MS/MS offers a wide number of methods and protocols for the characterization of protein complexes. This chapter concentrates on the applications of peptide-based LC-MS/MS for the qualitative, quantitative, and structural characterization of protein complexes focusing on subunit identification, determination of stoichiometric ratio and number of subunits per complex as well as on cross-linking mass spectrometry and hydrogen/deuterium exchange as methods for the structural investigation of the biological assemblies.
Collapse
|
3
|
Veenstra BT, Veenstra TD. Proteomic applications in identifying protein-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:1-48. [PMID: 38220421 DOI: 10.1016/bs.apcsb.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
There are many things that can be used to characterize a protein. Size, isoelectric point, hydrophobicity, structure (primary to quaternary), and subcellular location are just a few parameters that are used. The most important feature of a protein, however, is its function. While there are many experiments that can indicate a protein's role, identifying the molecules it interacts with is probably the most definitive way of determining its function. Owing to technology limitations, protein interactions have historically been identified on a one molecule per experiment basis. The advent of high throughput multiplexed proteomic technologies in the 1990s, however, made identifying hundreds and thousands of proteins interactions within single experiments feasible. These proteomic technologies have dramatically increased the rate at which protein-protein interactions (PPIs) are discovered. While the improvement in mass spectrometry technology was an early driving force in the rapid pace of identifying PPIs, advances in sample preparation and chromatography have recently been propelling the field. In this chapter, we will discuss the importance of identifying PPIs and describe current state-of-the-art technologies that demonstrate what is currently possible in this important area of biological research.
Collapse
Affiliation(s)
- Benjamin T Veenstra
- Department of Math and Sciences, Cedarville University, Cedarville, OH, United States
| | - Timothy D Veenstra
- School of Pharmacy, Cedarville University, Cedarville, OH, United States.
| |
Collapse
|
4
|
Yan Q, Li M, Zhang Y, Liu H, Liu F, Liao W, Wang Y, Duan H, Wei Z. A tyrosine, histidine-selective bifunctional cross-linker for protein structure analysis. Talanta 2023; 258:124421. [PMID: 36913793 DOI: 10.1016/j.talanta.2023.124421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Chemical cross-linking mass spectrometry (XL-MS) significantly contributes to the analysis of protein structures and the elucidation of protein-protein interactions. Currently available cross-linkers mainly target N-terminus, lysine, glutamate, aspartate, and cysteine residues in protein. Herein, a bifunctional cross-linker, named [4,4'-(disulfanediylbis(ethane-2,1-diyl)) bis(1-methyl-1,2,4-triazolidine-3,5-dione)] (DBMT) has been designed and characterized aiming to extremely expand the application of XL-MS approach. DBMT is capable of selectively targeting tyrosine residue in protein via an electrochemical click reaction, and/or targeting histidine residue in protein in the presence of 1O2 generated under photocatalytic reaction. A novel cross-linking strategy based on this cross-linker has been developed and demonstrated using model proteins, which provides a complementary XL-MS tool analyzing protein structure, protein complexes, protein-protein interactions, and even protein dynamics.
Collapse
Affiliation(s)
- Qibo Yan
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China
| | - Ming Li
- Division of Chemical Metrology & Analytical Science, National Institute of Metrology, Beijing, 100029, China.
| | - Yanxin Zhang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China
| | - Hailong Liu
- GeneScience Pharmaceuticals Co., Ltd., Changchun, 130012, China
| | - Feng Liu
- GeneScience Pharmaceuticals Co., Ltd., Changchun, 130012, China
| | - Weiwei Liao
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China
| | - Yingwu Wang
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Science, Jilin University, Changchun, 130012, China
| | - Haifeng Duan
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China
| | - Zhonglin Wei
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, China.
| |
Collapse
|
5
|
Mehta A, Kamal AHM, Cornelius S, Chowdhury SM. Protein-Protein Interaction Network Mapping by Affinity Purification Cross-Linking Mass Spectrometry (AP-XL-MS) based Proteomics. Methods Mol Biol 2023; 2690:255-267. [PMID: 37450153 DOI: 10.1007/978-1-0716-3327-4_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Protein-protein interactions (PPIs) are the physical interactions formed among proteins. These interactions are primarily functional, i.e., they arise from specific biomolecular events, and each interaction interface serves a specific purpose. A significant number of methods have been developed for protein interactions in the field of proteomics in the last decade. Advanced mass spectrometry technology significantly contributed to the development of these methods. The rapid advancement of groundbreaking MS technology has greatly aided the mapping of protein interaction from large-data sets comprehensively. This chapter describes the affinity purification (AP) mass spectrometry (MS)-based methods combined with chemical cross-linking (XL) of protein complexes. This chapter includes sample preparation methods involving cell culture, cell treatments with ligands, drugs, and cross-linkers, protein extractions, affinity purification, sodium dodecyl sulfate (SDS) polyacrylamide gel separation, in-solution or in-gel digestion, liquid-chromatography, and mass spectrometry analysis of samples (LC-MS/MS). Application of a cleavable cross-linker, dual cleavable cross-linking technology (DUCCT) in combination with the affinity purification (AP) method has also been described. Methods for data analysis using unmodified and cross-linked peptide analysis are discussed.
Collapse
Affiliation(s)
- Ashima Mehta
- Department of Chemistry and Biochemistry, University of Texas, Arlington, TX, USA
| | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sharel Cornelius
- Department of Chemistry and Biochemistry, University of Texas, Arlington, TX, USA
| | - Saiful M Chowdhury
- Department of Chemistry and Biochemistry, University of Texas, Arlington, TX, USA.
| |
Collapse
|
6
|
Mazmanian K, Chen T, Sargsyan K, Lim C. From quantum-derived principles underlying cysteine reactivity to combating the COVID-19 pandemic. WILEY INTERDISCIPLINARY REVIEWS. COMPUTATIONAL MOLECULAR SCIENCE 2022; 12:e1607. [PMID: 35600063 PMCID: PMC9111396 DOI: 10.1002/wcms.1607] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/31/2022] [Accepted: 02/13/2022] [Indexed: 12/20/2022]
Abstract
The COVID-19 pandemic poses a challenge in coming up with quick and effective means to counter its cause, the SARS-CoV-2. Here, we show how the key factors governing cysteine reactivity in proteins derived from combined quantum mechanical/continuum calculations led to a novel multi-targeting strategy against SARS-CoV-2, in contrast to developing potent drugs/vaccines against a single viral target such as the spike protein. Specifically, they led to the discovery of reactive cysteines in evolutionary conserved Zn2+-sites in several SARS-CoV-2 proteins that are crucial for viral polypeptide proteolysis as well as viral RNA synthesis, proofreading, and modification. These conserved, reactive cysteines, both free and Zn2+-bound, can be targeted using the same Zn-ejector drug (disulfiram/ebselen), which enables the use of broad-spectrum anti-virals that would otherwise be removed by the virus's proofreading mechanism. Our strategy of targeting multiple, conserved viral proteins that operate at different stages of the virus life cycle using a Zn-ejector drug combined with other broad-spectrum anti-viral drug(s) could enhance the barrier to drug resistance and antiviral effects, as compared to each drug alone. Since these functionally important nonstructural proteins containing reactive cysteines are highly conserved among coronaviruses, our proposed strategy has the potential to tackle future coronaviruses. This article is categorized under:Structure and Mechanism > Reaction Mechanisms and CatalysisStructure and Mechanism > Computational Biochemistry and BiophysicsElectronic Structure Theory > Density Functional Theory.
Collapse
Affiliation(s)
| | - Ting Chen
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
| | - Carmay Lim
- Institute of Biomedical Sciences Academia Sinica Taipei Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
7
|
Lambeth TR, Julian RR. Efficient Isothiocyanate Modification of Peptides Facilitates Structural Analysis by Radical-Directed Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1338-1345. [PMID: 34670075 DOI: 10.1021/jasms.1c00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Radical-directed dissociation (RDD) is a powerful technique for structural characterization of peptides in mass spectrometry experiments. Prior to analysis, a radical precursor must typically be appended to facilitate generation of a free radical. To explore the use of a radical precursor that can be easily attached in a single step, we modified peptides using a "click" reaction with iodophenyl isothiocyanate. Coupling with amine functional groups proceeds with high yields, producing stable iodophenylthiourea-modified peptides. Photodissociation yields were recorded at 266 and 213 nm for the 2-, 3-, and 4-iodo isomers of the modifier and found to be highest for the 4-iodo isomer in nearly all cases. Fragmentation of the modified peptides following collisional activation revealed favorable losses of the tag, and electronic structure calculations were used to evaluate a potential mechanism involving hydrogen transfer within the thiourea group. Examination of RDD data revealed that 4-iodobenzoic acid, 4-iodophenylthiourea, and 3-iodotyrosine yield similar fragmentation patterns for a given peptide, although differences in fragment abundance are noted. Iodophenyl isothiocyanate labeling in combination with RDD can be used to differentiate isomeric amino acids within peptides, which should facilitate simplified evaluation of isomers present in complex biological samples.
Collapse
Affiliation(s)
- Tyler R Lambeth
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ryan R Julian
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
8
|
Piersimoni L, Kastritis PL, Arlt C, Sinz A. Cross-Linking Mass Spectrometry for Investigating Protein Conformations and Protein-Protein Interactions─A Method for All Seasons. Chem Rev 2021; 122:7500-7531. [PMID: 34797068 DOI: 10.1021/acs.chemrev.1c00786] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mass spectrometry (MS) has become one of the key technologies of structural biology. In this review, the contributions of chemical cross-linking combined with mass spectrometry (XL-MS) for studying three-dimensional structures of proteins and for investigating protein-protein interactions are outlined. We summarize the most important cross-linking reagents, software tools, and XL-MS workflows and highlight prominent examples for characterizing proteins, their assemblies, and interaction networks in vitro and in vivo. Computational modeling plays a crucial role in deriving 3D-structural information from XL-MS data. Integrating XL-MS with other techniques of structural biology, such as cryo-electron microscopy, has been successful in addressing biological questions that to date could not be answered. XL-MS is therefore expected to play an increasingly important role in structural biology in the future.
Collapse
Affiliation(s)
- Lolita Piersimoni
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Panagiotis L Kastritis
- Interdisciplinary Research Center HALOmem, Charles Tanford Protein Center, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany.,Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Biozentrum, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | - Christian Arlt
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany.,Center for Structural Mass Spectrometry, Kurt-Mothes-Strasse 3, D-06120 Halle (Saale), Germany
| |
Collapse
|
9
|
Yugandhar K, Zhao Q, Gupta S, Xiong D, Yu H. Progress in methodologies and quality-control strategies in protein cross-linking mass spectrometry. Proteomics 2021; 21:e2100145. [PMID: 34647422 DOI: 10.1002/pmic.202100145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 11/10/2022]
Abstract
Deciphering the interaction networks and structural dynamics of proteins is pivotal to better understanding their biological functions. Cross-linking mass spectrometry (XL-MS) is a powerful and increasingly popular technology that provides information about protein-protein interactions and their structural constraints for individual proteins and multiprotein complexes on a proteome-scale. In this review, we first assess the coverage and depth of the XL-MS technique by utilizing publicly available datasets. We then delve into the progress in XL-MS experimental and computational methodologies and examine different quality-control strategies reported in the literature. Finally, we discuss the progress in XL-MS applications along with the scope for future improvements.
Collapse
Affiliation(s)
- Kumar Yugandhar
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Qiuye Zhao
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Shobhita Gupta
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Dapeng Xiong
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| | - Haiyuan Yu
- Department of Computational Biology, Cornell University, New York, USA.,Weill Institute for Cell and Molecular Biology, Cornell University, New York, USA
| |
Collapse
|
10
|
Gutierrez C, Salituro LJ, Yu C, Wang X, DePeter SF, Rychnovsky SD, Huang L. Enabling Photoactivated Cross-Linking Mass Spectrometric Analysis of Protein Complexes by Novel MS-Cleavable Cross-Linkers. Mol Cell Proteomics 2021; 20:100084. [PMID: 33915260 PMCID: PMC8214149 DOI: 10.1016/j.mcpro.2021.100084] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022] Open
Abstract
Cross-linking mass spectrometry (XL-MS) is a powerful tool for studying protein-protein interactions and elucidating architectures of protein complexes. While residue-specific XL-MS studies have been very successful, accessibility of interaction regions nontargetable by specific chemistries remain difficult. Photochemistry has shown great potential in capturing those regions because of nonspecific reactivity, but low yields and high complexities of photocross-linked products have hindered their identification, limiting current studies predominantly to single proteins. Here, we describe the development of three novel MS-cleavable heterobifunctional cross-linkers, namely SDASO (Succinimidyl diazirine sulfoxide), to enable fast and accurate identification of photocross-linked peptides by MSn. The MSn-based workflow allowed SDASO XL-MS analysis of the yeast 26S proteasome, demonstrating the feasibility of photocross-linking of large protein complexes for the first time. Comparative analyses have revealed that SDASO cross-linking is robust and captures interactions complementary to residue-specific reagents, providing the foundation for future applications of photocross-linking in complex XL-MS studies.
Collapse
Affiliation(s)
- Craig Gutierrez
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Leah J Salituro
- Department of Chemistry, University of California, Irvine, California, USA
| | - Clinton Yu
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Xiaorong Wang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Sadie F DePeter
- Department of Chemistry, University of California, Irvine, California, USA
| | - Scott D Rychnovsky
- Department of Chemistry, University of California, Irvine, California, USA
| | - Lan Huang
- Department of Physiology and Biophysics, University of California, Irvine, California, USA.
| |
Collapse
|
11
|
Li M, Ling L, Xia Q, Li X. A reduction-responsive drug delivery with improved stability: disulfide crosslinked micelles of small amiphiphilic molecules. RSC Adv 2021; 11:12757-12770. [PMID: 35423790 PMCID: PMC8697188 DOI: 10.1039/d1ra00079a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/14/2021] [Indexed: 01/02/2023] Open
Abstract
Micelles self-assembled from small amphiphilic molecules are unstable in biological fluids, and thus are poor drug carriers. In contrast, amphiphilic polymer micelles can encapsulate hydrophobic drugs in their core to greatly enhance their aqueous solubility and extend their retention time in blood circulation owing to their hydrophilic shell. However, the major disadvantages of conventional polymer micelles are the heterogeneity of the amphiphilic polymer structure and premature drug leakage. Thus, herein, to address these shortcomings, disulfide crosslinked micelles composed of a small amphiphilic molecule, di-lipoyl-glycerophosphorylcholine (di-LA-PC), were developed as redox-responsive drug carriers. Specifically, di-LA-PC was synthesized and self-assembled to form crosslinked micelles under catalysis by dithiothreitol. The disulfide crosslinked micelles maintained high stability in a simulated physiological environment, but rapidly disassembled under reductive conditions. Furthermore, paclitaxel (PTX), as a model drug, was encapsulated in the core of the crosslinked micelles with a high loading content of 8.13%. The in vitro release studies indicated that over 80% of PTX was released from the micelles in the reductive environment, whereas less than 20% PTX was released without reduction in the 68 h test. Benefiting from their nanoscale characteristics, the PTX-loaded micelles showed efficient cellular internalization and effectively induced the death of cancer cells, as revealed in the MTT, apoptosis and cell cycle tests. Moreover, pharmacokinetic studies demonstrated that the crosslinked micelles prolonged the circulation of the incorporated PTX in the bloodstream and increased its accumulation in the tumor tissue via the EPR effect. Finally, the PTX-loaded micelles displayed prominent in vivo anti-tumor activity in a 4T1 xenograft tumor model. In summary, the di-LA-PC crosslinked micelle platform possesses excellent stability, high loading capacity and reduction-responsive release profile, which may have applications in the delivery of PTX and other anti-cancer drugs.
Collapse
Affiliation(s)
- Man Li
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 214122 China
| | - Longbing Ling
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 214122 China
| | - Qing Xia
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 214122 China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University Nanjing 214122 China
| |
Collapse
|
12
|
First 3D-Structural Data of Full-Length Guanylyl Cyclase 1 in Rod-Outer-Segment Preparations of Bovine Retina by Cross-Linking/Mass Spectrometry. J Mol Biol 2021; 433:166947. [PMID: 33744315 DOI: 10.1016/j.jmb.2021.166947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 11/24/2022]
Abstract
The rod-outer-segment guanylyl cyclase 1 (ROS-GC1) is a key transmembrane protein for retinal phototransduction. Mutations of ROS-GC1 correlate with different retinal diseases that often lead to blindness. No structural data are available for ROS-GC1 so far. We performed a 3D-structural analysis of native ROS-GC1 from bovine retina by cross-linking/mass spectrometry (XL-MS) and computational modeling. Absolute quantification and activity measurements of native ROS-GC1 were performed by MS-based assays directly in bovine retina samples. Our data present the first 3D-structural analysis of active, full-length ROS-GC1 derived from bovine retina. We propose a novel domain organization for the intracellular domain ROS-GC1. Our XL-MS data of native ROS-GC1 from rod-outer-segment preparations of bovine retina agree with a dimeric architecture. Our integrated approach can serve as a blueprint for conducting 3D-structural studies of membrane proteins in their native environment.
Collapse
|
13
|
Cui L, Ma Y, Li M, Wei Z, Huan Y, Li H, Fei Q, Zheng L. Tyrosine-Reactive Cross-Linker for Probing Protein Three-Dimensional Structures. Anal Chem 2021; 93:4434-4440. [PMID: 33660978 DOI: 10.1021/acs.analchem.0c04337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cross-linking mass spectrometry (XL-MS) has made significant progress in understanding the structure of protein and elucidating architectures of larger protein complexes. Current XL-MS applications are limited to targeting lysine, glutamic acid, aspartic acid, and cysteine residues. There remains a need for the development of novel cross-linkers enabling selective targeting of other amino acid residues in proteins. Here, a novel simple cross-linker, namely, [4,4'-(disulfanediylbis(ethane-2,1-diyl)) bis(1,2,4-triazolidine-3,5-dione)] (DBB), has been designed, synthesized, and characterized. This cross-linker can react selectively with tyrosine residues in protein through the electrochemical click reaction. The DBB cross-links produced the characteristic peptides before and after electrochemical reduction, thus permitting the simplified data analysis and accurate identification for the cross-linked products. This is the first time a cross-linker is developed for targeting tyrosine residues on protein without using photoirradiation or a metal catalyst. This strategy might potentially be used as a complementary tool for XL-MS to probe protein 3D structures, protein complexes, and protein-protein interaction.
Collapse
Affiliation(s)
- Lili Cui
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yongge Ma
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| | - Ming Li
- Division of Chemical Metrology & Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Zhonglin Wei
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Yanfu Huan
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Hongmei Li
- Division of Chemical Metrology & Analytical Science, National Institute of Metrology, Beijing 100029, China
| | - Qiang Fei
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Lianyou Zheng
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China
| |
Collapse
|
14
|
Matzinger M, Mechtler K. Cleavable Cross-Linkers and Mass Spectrometry for the Ultimate Task of Profiling Protein-Protein Interaction Networks in Vivo. J Proteome Res 2021; 20:78-93. [PMID: 33151691 PMCID: PMC7786381 DOI: 10.1021/acs.jproteome.0c00583] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Cross-linking mass spectrometry (XL-MS) has matured into a potent tool to identify protein-protein interactions or to uncover protein structures in living cells, tissues, or organelles. The unique ability to investigate the interplay of proteins within their native environment delivers valuable complementary information to other advanced structural biology techniques. This Review gives a comprehensive overview of the current possible applications as well as the remaining limitations of the technique, focusing on cross-linking in highly complex biological systems like cells, organelles, or tissues. Thanks to the commercial availability of most reagents and advances in user-friendly data analysis, validation, and visualization tools, studies using XL-MS can, in theory, now also be utilized by nonexpert laboratories.
Collapse
Affiliation(s)
- Manuel Matzinger
- Research
Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| | - Karl Mechtler
- Research
Institute of Molecular Pathology (IMP), Campus-Vienna-Biocenter 1, Vienna 1030, Austria
| |
Collapse
|
15
|
WITHDRAWN: Reversible small-molecule polymerizable phosphatidylcholine: Novel disulfide crosslinked micelles for redox-dependent drug delivery. Acta Pharm Sin B 2020. [DOI: 10.1016/j.apsb.2020.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Grasso G. THE USE OF MASS SPECTROMETRY TO STUDY ZN-METALLOPROTEASE-SUBSTRATE INTERACTIONS. MASS SPECTROMETRY REVIEWS 2020; 39:574-585. [PMID: 31898821 DOI: 10.1002/mas.21621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
Zinc metalloproteases (ZnMPs) participate in diverse biological reactions, encompassing the synthesis and degradation of all the major metabolites in living organisms. In particular, ZnMPs have been recognized to play a very important role in controlling the concentration level of several peptides and/or proteins whose homeostasis has to be finely regulated for the correct physiology of cells. Dyshomeostasis of aggregation-prone proteins causes pathological conditions and the development of several different diseases. For this reason, in recent years, many analytical approaches have been applied for studying the interaction between ZnMPs and their substrates and how environmental factors can affect enzyme activities. In this scenario, mass spectrometric methods occupy a very important role in elucidating different aspects of ZnMPs-substrates interaction. These range from identification of cleavage sites to quantitation of kinetic parameters. In this work, an overview of all the main achievements regarding the application of mass spectrometric methods to investigating ZnMPs-substrates interactions is presented. A general experimental protocol is also described which may prove useful to the study of similar interactions. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Department of Chemical Sciences, Università degli Studi di Catania, Viale Andrea Doria 6, Catania, 95125, Italy
| |
Collapse
|
17
|
Cross-linking/mass spectrometry to get a closer view on protein interaction networks. Curr Opin Biotechnol 2020; 63:48-53. [DOI: 10.1016/j.copbio.2019.12.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/02/2019] [Accepted: 12/09/2019] [Indexed: 12/21/2022]
|
18
|
Fülöp A, Bausbacher T, Rizzo S, Zhou Q, Gillandt H, Hopf C, Rittner M. New Derivatization Reagent for Detection of free Thiol-groups in Metabolites and Proteins in Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Anal Chem 2020; 92:6224-6228. [PMID: 32233426 DOI: 10.1021/acs.analchem.9b05630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Several diseases are associated with disturbed redox signaling and altered metabolism of sulfur-containing metabolites and proteins. Importantly, oxidative degradation of fresh-frozen tissues begins within the normal time scale of MALDI MSI sample preparation. As a result, analytical methods that preserve the redox state of the tissue are urgently needed for refined studies of the underlying mechanisms. Nevertheless, no derivatization strategy for free sulfhydryl groups in tissue is known for MALDI MSI. Here, we report the first derivatization reagent, (E)-2-cyano-N-(2-(2,5-dioxo-2,5-dihydro-1H-pyrrol-1-yl)ethyl)-3-(4-hydroxyphenyl)acrylamide (CHC-Mal), for selective detection of free thiols using MALDI MSI. We performed in situ derivatization of free thiol groups from thiol-containing metabolites such as glutathione and cysteine and reduced proteins such as insulin and imaged their spatial distribution in porcine and mouse xenograft tissue. Derivatization of thiol-containing metabolites with CHC-Mal for MALDI MSI was also possible when using aged tissue in the presence of excess reducing agents. Importantly, CHC-Mal-derivatized low mass-metabolites could be detected without the use of a conventional MALDI matrix.
Collapse
Affiliation(s)
- Annabelle Fülöp
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Tobias Bausbacher
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Stefano Rizzo
- Sirius Fine Chemicals SiChem GmbH, Fahrenheitstr. 1, 28359 Bremen, Germany
| | - Qiuqin Zhou
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Hartmut Gillandt
- Sirius Fine Chemicals SiChem GmbH, Fahrenheitstr. 1, 28359 Bremen, Germany
| | - Carsten Hopf
- Center for Mass Spectrometry and Optical Spectroscopy (CeMOS), Mannheim University of Applied Sciences, Paul-Wittsack-Str. 10, 68163 Mannheim, Germany
| | - Miriam Rittner
- Sirius Fine Chemicals SiChem GmbH, Fahrenheitstr. 1, 28359 Bremen, Germany
| |
Collapse
|
19
|
Gallion LA, Anttila MM, Abraham DH, Proctor A, Allbritton NL. Preserving Single Cells in Space and Time for Analytical Assays. Trends Analyt Chem 2020; 122:115723. [PMID: 32153309 PMCID: PMC7061724 DOI: 10.1016/j.trac.2019.115723] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Analytical assays performed within clinical laboratories influence roughly 70% of all medical decisions by facilitating disease detection, diagnosis, and management. Both in clinical and academic research laboratories, single-cell assays permit measurement of cell diversity and identification of rare cells, both of which are important in the understanding of disease pathogenesis. For clinically utility, the single-cell assays must be compatible with the clinical workflow steps of sample collection, sample transportation, pre-analysis processing, and single-cell assay; therefore, it is paramount to preserve cells in a state that resembles that in vivo rather than measuring signaling behaviors initiated in response to stressors such as sample collection and processing. To address these challenges, novel cell fixation (and more broadly, cell preservation) techniques incorporate programmable fixation times, reversible bond formation and cleavage, chemoselective reactions, and improved analyte recovery. These technologies will further the development of individualized, precision therapies for patients to yield improved clinical outcomes.
Collapse
Affiliation(s)
- Luke A. Gallion
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Matthew M. Anttila
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - David H. Abraham
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Angela Proctor
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Nancy L. Allbritton
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27599, USA and North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
20
|
Hage C, Iacobucci C, Götze M, Sinz A. A biuret-derived, MS-cleavable cross-linking reagent for protein structural analysis: A proof-of-principle study. JOURNAL OF MASS SPECTROMETRY : JMS 2020; 55:e4449. [PMID: 31820512 DOI: 10.1002/jms.4449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Chemical cross-linking combined with mass spectrometry (XL-MS) and computational modeling has evolved as an alternative method to derive protein 3D structures and to map protein interaction networks. Special focus has been laid recently on the development and application of cross-linkers that are cleavable by collisional activation as they yield distinct signatures in tandem mass spectra. Building on our experiences with cross-linkers containing an MS-labile urea group, we now present the biuret-based, CID-MS/MS-cleavable cross-linker imidodicarbonyl diimidazole (IDDI) and demonstrate its applicability for protein cross-linking studies based on the four model peptides angiotensin II, MRFA, substance P, and thymopentin.
Collapse
Affiliation(s)
- Christoph Hage
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale), D-06120, Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale), D-06120, Germany
| | - Michael Götze
- Institute for Biochemistry and Biotechnology, Charles-Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale), D-06120, Germany
- Institute of Molecular Systems Biology, Otto-Stern-Weg 3, ETH, Zurich, Zurich, CH-8093, Switzerland
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Str. 3a, Halle (Saale), D-06120, Germany
| |
Collapse
|
21
|
Huang R, Zhu W, Wu Y, Chen J, Yu J, Jiang B, Chen H, Chen W. A novel mass spectrometry-cleavable, phosphate-based enrichable and multi-targeting protein cross-linker. Chem Sci 2019; 10:6443-6447. [PMID: 31341596 PMCID: PMC6611067 DOI: 10.1039/c9sc00893d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/23/2019] [Indexed: 12/13/2022] Open
Abstract
Chemical cross-linking mass spectrometry (XL-MS) is a powerful technology for obtaining protein structural information and studying protein-protein interactions. We report phospho-bisvinylsulfone (pBVS) as a novel water-soluble, MS-cleavable, phosphate-based enrichable and multi-targeting cross-linker. In this approach, the fragmentation of pBVS cross-linked peptides occurs in situ through retro-Michael addition. The phosphate group is successfully used as a small affinity tag to isolate cross-linked peptides from the highly abundant non-cross-linked peptides. In addition, the linker targets multiple types of amino acid residues, including cysteine, lysine and histidine. This method was applied to cross-link bovine serum albumin (BSA), myoglobin and Lbcpf1 demonstrating the ability to yield accurate and abundant information to facilitate protein structure elucidation.
Collapse
Affiliation(s)
- Rong Huang
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Pudong , Shanghai 201210 , China . ; ;
- University of Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District , Beijing , 100049 , China
| | - Wei Zhu
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Pudong , Shanghai 201210 , China . ; ;
| | - Yue Wu
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Pudong , Shanghai 201210 , China . ; ;
| | - Jiakang Chen
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Pudong , Shanghai 201210 , China . ; ;
| | - Jianghui Yu
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Pudong , Shanghai 201210 , China . ; ;
- University of Chinese Academy of Sciences , 19A Yuquan Road, Shijingshan District , Beijing , 100049 , China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Pudong , Shanghai 201210 , China . ; ;
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Pudong , Shanghai 201210 , China . ; ;
| | - Wenzhang Chen
- Shanghai Institute for Advanced Immunochemical Studies , ShanghaiTech University , 393 Middle Huaxia Road , Pudong , Shanghai 201210 , China . ; ;
| |
Collapse
|
22
|
Götze M, Iacobucci C, Ihling CH, Sinz A. A Simple Cross-Linking/Mass Spectrometry Workflow for Studying System-wide Protein Interactions. Anal Chem 2019; 91:10236-10244. [DOI: 10.1021/acs.analchem.9b02372] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Michael Götze
- Institute for Biochemistry and Biotechnology, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany
| | - Christian H. Ihling
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry & Bioanalytics, Institute of Pharmacy, Charles Tanford Protein Center, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Strasse 3a, D-06120 Halle (Saale), Germany
| |
Collapse
|
23
|
Kaur U, Johnson DT, Chea EE, Deredge DJ, Espino JA, Jones LM. Evolution of Structural Biology through the Lens of Mass Spectrometry. Anal Chem 2019; 91:142-155. [PMID: 30457831 PMCID: PMC6472977 DOI: 10.1021/acs.analchem.8b05014] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Upneet Kaur
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Danté T. Johnson
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Emily E. Chea
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Daniel J. Deredge
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Jessica A. Espino
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| | - Lisa M. Jones
- Department of Pharmaceutical Sciences, University of Maryland, Baltimore, Maryland 21201, United States
| |
Collapse
|
24
|
A cross-linking/mass spectrometry workflow based on MS-cleavable cross-linkers and the MeroX software for studying protein structures and protein–protein interactions. Nat Protoc 2018; 13:2864-2889. [DOI: 10.1038/s41596-018-0068-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
25
|
Rehkamp A, Tänzler D, Iacobucci C, Golbik RP, Ihling CH, Sinz A. Molecular Details of Retinal Guanylyl Cyclase 1/GCAP-2 Interaction. Front Mol Neurosci 2018; 11:330. [PMID: 30283299 PMCID: PMC6156451 DOI: 10.3389/fnmol.2018.00330] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/27/2018] [Indexed: 12/13/2022] Open
Abstract
The rod outer segment guanylyl cyclase 1 (ROS-GC1) is an essential component of photo-transduction in the retina. In the light-induced signal cascade, membrane-bound ROS-GC1 restores cGMP levels in the dark in a calcium-dependent manner. With decreasing calcium concentration in the intracellular compartment, ROS-GC1 is activated via the intracellular site by guanylyl cyclase-activating proteins (GCAP-1/-2). Presently, the exact activation mechanism is elusive. To obtain structural insights into the ROS-GC1 regulation by GCAP-2, chemical cross-linking/mass spectrometry studies using GCAP-2 and three ROS-GC1 peptides were performed in the presence and absence of calcium. The majority of cross-links were identified with the C-terminal lobe of GCAP-2 and a peptide comprising parts of ROS-GC1's catalytic domain and C-terminal extension. Consistently with the cross-linking results, surface plasmon resonance and fluorescence measurements confirmed specific binding of this ROS-GC peptide to GCAP-2 with a dissociation constant in the low micromolar range. These results imply that a region of the catalytic domain of ROS-GC1 can participate in the interaction with GCAP-2. Additional binding surfaces upstream of the catalytic domain, in particular the juxtamembrane domain, can currently not be excluded.
Collapse
Affiliation(s)
- Anne Rehkamp
- Department of Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Dirk Tänzler
- Department of Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Claudio Iacobucci
- Department of Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Ralph P Golbik
- Department of Microbial Biotechnology, Charles Tanford Protein Center, Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Christian H Ihling
- Department of Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andrea Sinz
- Department of Pharmaceutical Chemistry and Bioanalytics, Charles Tanford Protein Center, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
26
|
Chavez JD, Bruce JE. Chemical cross-linking with mass spectrometry: a tool for systems structural biology. Curr Opin Chem Biol 2018; 48:8-18. [PMID: 30172868 DOI: 10.1016/j.cbpa.2018.08.006] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 01/14/2023]
Abstract
Biological processes supporting life are orchestrated by a highly dynamic array of protein structures and interactions comprising the interactome. Defining the interactome, visualizing how structures and interactions change and function to support life is essential to improved understanding of fundamental molecular processes, but represents a challenge unmet by any single analytical technique. Chemical cross-linking with mass spectrometry provides identification of proximal amino acid residues within proteins and protein complexes, yielding low resolution structural information. This approach has predominantly been employed to provide structural insight on isolated protein complexes, and has been particularly useful for molecules that are recalcitrant to conventional structural biology studies. Here we discuss recent developments in cross-linking and mass spectrometry technologies that are providing large-scale or systems-level interactome data with successful applications to isolated organelles, cell lysates, virus particles, intact bacterial and mammalian cultured cells and tissue samples.
Collapse
Affiliation(s)
- Juan D Chavez
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - James E Bruce
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|