1
|
Lee JU, Kim S, Munshi MU, Hwangbo S, Lee SY, Moon B, Lee HS, Oh HB. Elucidating Tertiary Structures of Affibody in Vacuo Using Genetic Code Expansion and FRIPS Mass Spectrometry. Anal Chem 2024; 96:20296-20303. [PMID: 39663559 DOI: 10.1021/acs.analchem.4c05148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Radical-directed protein fragmentation techniques, particularly free radical-initiated peptide sequencing (FRIPS) mass spectrometry (MS), offer significant potential for elucidating protein structures in the gas phase. This study presents a novel approach to protein structural analysis in vacuo, combining FRIPS MS with genetic code expansion (GCE) technology. By incorporating unnatural amino acids (UAAs) at specific sites within an Affibody protein, we effectively introduced a radical precursor at six distinct positions. The study explores structural information derived from radical-directed fragmentations by analyzing the proximity and pathways of radical transfer within the protein's tertiary structure. Our findings reveal that in the lowest charge state (+5), the Affibody retains a folded conformation resembling its native structure, with significant radical-directed fragmentations occurring through both "through-sequence" and "through-space" mechanisms. These results demonstrate the potential of FRIPS MS to provide residue-specific insights into protein folding and structural information in the gas phase, paving the way for a more detailed protein structure analysis.
Collapse
Affiliation(s)
- Jae-Ung Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- Analytical Sciences Center, LG Chem, Seoul 07796, Republic of Korea
| | - Sanggil Kim
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju, Chungbuk 28160, Republic of Korea
| | | | - Song Hwangbo
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - So Yeon Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Bongjin Moon
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| |
Collapse
|
2
|
Bhanot JS, Fabijanczuk KC, Abdillahi AM, Chao HC, Pizzala NJ, Londry FA, Dziekonski ET, Hager JW, McLuckey SA. Adaptation and Operation of a Quadrupole/Time-of-Flight Tandem Mass Spectrometer for High Mass Ion/Ion Reaction Studies. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2022; 478:116874. [PMID: 37032994 PMCID: PMC10081487 DOI: 10.1016/j.ijms.2022.116874] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
A commercial quadrupole/time-of-flight tandem mass spectrometer has been modified and evaluated for its performance in conducting ion/ion reaction studies involving high mass (>100 kDa) ions. Modifications include enabling the application of dipolar AC waveforms to opposing rods in three quadrupole arrays in the ion path. This modification allows for resonance excitation of ions to effect ion activation, selective ion isolation, and ion parking. The other set of opposing rods in each array is enabled for the application of dipolar DC voltages for the purpose of broad-band (non-selective) ion heating. The plates between each quadrupole array are enabled for the application of either DC or AC (or both) voltages. The use of AC voltages allows for the simultaneous storage of ions of opposite polarity, thereby enabling mutual storage ion/ion reactions. Ions derived from nano-electrospray ionization of GroEL and β-galactosidase under native conditions were used to evaluate limits of instrument performance, in terms of m/z range, ion isolation, and ion storage. After adjustment of the pulser frequency, ions as high in m/z as 400,000 were detected. Significant losses in efficiency were noted above m/z 250,000 that is likely due to roll-over in the ion detector efficiency and possibly also due to limitations in ion transfer efficiency from the collision quadrupole to the pulser region of the mass analyzer. No measurable decrease in the apparent mass resolving power was noted upon charge state reduction of the model ions. Resonance ejection techniques that employ the dipolar AC capabilities of the quadrupoles allow for ion isolation at m/z values much greater than the RF/DC limitation of Q1 of m/z = 2100. For example, at the highest low-mass cutoff achievable in the collision quadrupole (m/z = 500), it is possible to isolate ions of m/z as high as 62,000. This is limited by the lowest dipolar AC frequency (5 kHz) that can be applied. A simple model is included to provide for an estimate of the ion cloud radius based on ion m/z, ion z, and ion trap operating conditions. The model predicts that singly charged ions of 1 MDa and thermal energy can be contained in the ion trap at the maximum low-mass cutoff, although such an ion would not be detected efficiently. Doubly charged GroEL ions were observed experimentally. Collectively, the performance characteristics at high m/z, the functionality provided by the standard instrument capabilities, the modifications described above, and highly flexible instrument control software provide for a highly versatile platform for the study of high mass ion/ion reactions.
Collapse
Affiliation(s)
- Jay S. Bhanot
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | | | | | - Hsi-Chun Chao
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | - Nicolas J. Pizzala
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| | | | | | | | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907-2084
| |
Collapse
|
3
|
2-Pyridine Carboxaldehyde for Semi-Automated Soft Spot Identification in Cyclic Peptides. Int J Mol Sci 2022; 23:ijms23084269. [PMID: 35457087 PMCID: PMC9028278 DOI: 10.3390/ijms23084269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/17/2022] Open
Abstract
Cyclic peptides are an attractive option as therapeutics due to their ability to disrupt crucial protein-protein interactions and their flexibility in display type screening strategies, but they come with their own bioanalytical challenges in metabolite identification. Initial amide hydrolysis of a cyclic peptide results in a ring opening event in which the sequence is linearized. Unfortunately, the mass of the singly hydrolyzed sequence is the same (M + 18.0106 Da) irrespective of the initial site of hydrolysis, or soft spot. Soft spot identification at this point typically requires time-consuming manual interpretation of the tandem mass spectra, resulting in a substantial bottleneck in the hit to lead process. To overcome this, derivatization using 2-pyridine carboxaldehyde, which shows high selectivity for the alpha amine on the N-terminus, was employed. This strategy results in moderate- to high-efficiency derivatization with a unique mass tag and diagnostic ions that serve to highlight the first amino acid in the newly linearized peptide. The derivatization method and analytical strategy are demonstrated on a whole cell lysate digest, and the soft spot identification strategy is shown with two commercially available cyclic peptides: JB1 and somatostatin. Effective utilization of the automated sample preparation and interpretation of the resulting spectra shown here will serve to reduce the hit-to-lead time for generating promising proteolytically stable peptide candidates.
Collapse
|
4
|
Wu Z, Wang H, Tustian A, Qiu H, Li N. Development of a Two-Dimensional Liquid Chromatography-Mass Spectrometry Platform for Simultaneous Multi-Attribute Characterization of Adeno-Associated Viruses. Anal Chem 2022; 94:3219-3226. [PMID: 35142492 DOI: 10.1021/acs.analchem.1c04873] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Adeno-associated viruses (AAVs) are non-enveloped, single-stranded DNA viruses that have recently emerged as an attractive vector for delivering genetic materials to hosts for gene therapy applications. Due to their ability to transduce a wide range of species and tissues in vivo, low risk of immunotoxicity, and mild innate and adaptive immune responses, AAVs are currently used in research and clinical studies as a monotherapy or with other biomolecules to perform gene editing, replacement, addition, and silencing. As AAVs are a new and complex therapeutic modality with molecular weights into the megadalton range, new analytical techniques are therefore needed to support process development, product characterization, and release. In this study, an online two-dimensional liquid chromatography-mass spectrometry (2DLC-MS) method was developed for AAV characterization. Our method uses high-resolution anion-exchange chromatography (AEX) in the first dimension to separate and measure empty and full capsids in AAV samples, followed by reversed-phase liquid chromatography coupled with mass spectrometry (RPLC-MS) to separate and characterize viral proteins. In this technique, online denaturation and removal of MS-incompatible salt were performed following AEX. The viral proteins present in the peak of interest after first-dimensional AEX are subjected to intact protein separation on the second-dimensional RPLC column and then characterized by MS. The 2DLC-MS method demonstrated in this study allows for high-throughput and multi-attribute AAV characterization in a single run, with minimal sample handling required for different AAV serotypes.
Collapse
Affiliation(s)
- Zhijie Wu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Hongxia Wang
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Andrew Tustian
- Viral Production Core, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Haibo Qiu
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| | - Ning Li
- Analytical Chemistry, Regeneron Pharmaceuticals, Inc., 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707, United States
| |
Collapse
|
5
|
Molnar BT, Shelley JT. MODERN PLASMA-BASED DESORPTION/IONIZATION: FROM ATOMS AND MOLECULES TO CHEMICAL SYNTHESIS. MASS SPECTROMETRY REVIEWS 2021; 40:609-627. [PMID: 32770688 DOI: 10.1002/mas.21645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/05/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Since the first mass spectrometry (MS) experiments were conducted by Thomson and Aston, plasmas have been used as ionization sources. Historically, plasma ion sources were used for these experiments because they were one of the few known sources of gas-phase ions at the time and they were relatively simple to setup and operate. Since then, developments in plasma ionization have continued to inform and motivate advances in other areas of MS. For example, plasma-desorption MS demonstrated ionization of large peptides and polymers more than 10 years before the first descriptions of electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI). As a result, significant effort was placed on development of ionization approaches, mass analysis, and detection approaches for very large molecules: even before the advent of ESI and MALDI. Since then, new analytical challenges and opportunities in plasma ionization have arisen. In this review, the emerging trends in plasma-based ionization for several areas of MS will be discussed, including molecular ionization, elemental ionization, hybrid elemental and molecular ion sources, and unique chemical transformations. © 2020 John Wiley & Sons Ltd. Mass Spec Rev.
Collapse
Affiliation(s)
- Brian T Molnar
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180
| | - Jacob T Shelley
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, 12180
| |
Collapse
|
6
|
Ives AN, Su T, Durbin KR, Early BP, Dos Santos Seckler H, Fellers RT, LeDuc RD, Schachner LF, Patrie SM, Kelleher NL. Using 10,000 Fragment Ions to Inform Scoring in Native Top-down Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1398-1409. [PMID: 32436704 PMCID: PMC7539637 DOI: 10.1021/jasms.0c00026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Protein fragmentation is a critical component of top-down proteomics, enabling gene-specific protein identification and full proteoform characterization. The factors that influence protein fragmentation include precursor charge, structure, and primary sequence, which have been explored extensively for collision-induced dissociation (CID). Recently, noticeable differences in CID-based fragmentation were reported for native versus denatured proteins, motivating the need for scoring metrics that are tailored specifically to native top-down mass spectrometry (nTDMS). To this end, position and intensity were tracked for 10,252 fragment ions produced by higher-energy collisional dissociation (HCD) of 159 native monomers and 70 complexes. We used published structural data to explore the relationship between fragmentation and protein topology and revealed that fragmentation events occur at a large range of relative residue solvent accessibility. Additionally, our analysis found that fragment ions at sites with an N-terminal aspartic acid or a C-terminal proline make up on average 40 and 27%, respectively, of the total matched fragment ion intensity in nTDMS. Percent intensity contributed by each amino acid was determined and converted into weights to (1) update the previously published C-score and (2) construct a native Fragmentation Propensity Score. Both scoring systems showed an improvement in protein identification or characterization in comparison to traditional methods and overall increased confidence in results with fewer matched fragment ions but with high probability nTDMS fragmentation patterns. Given the rise of nTDMS as a tool for structural mass spectrometry, we forward these scoring metrics as new methods to enhance analysis of nTDMS data.
Collapse
Affiliation(s)
- Ashley N Ives
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Taojunfeng Su
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Kenneth R Durbin
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Proteinaceous Inc., P.O. Box 1839, Evanston, Illinois 60204, United States
| | - Bryan P Early
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Henrique Dos Santos Seckler
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Ryan T Fellers
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Proteinaceous Inc., P.O. Box 1839, Evanston, Illinois 60204, United States
| | - Richard D LeDuc
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Luis F Schachner
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Steven M Patrie
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
| | - Neil L Kelleher
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, 2170 Campus Drive, Evanston, Illinois 60208, United States
- Proteinaceous Inc., P.O. Box 1839, Evanston, Illinois 60204, United States
| |
Collapse
|
7
|
Foreman DJ, Bhanot J, Lee KW, McLuckey SA. Valet Parking for Protein Ion Charge State Concentration: Ion/Molecule Reactions in Linear Ion Traps. Anal Chem 2020; 92:5419-5425. [PMID: 32100997 PMCID: PMC7145756 DOI: 10.1021/acs.analchem.0c00146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There are several analytical applications in which it is desirable to concentrate analyte ions generated over a range of charge states into a single charge state. This has been demonstrated in the gas phase via ion/ion reactions in conjunction with a technique termed ion parking, which can be implemented in electrodynamic ion traps. Ion parking depends upon the selective inhibition of the reaction of a selected charge state or charge states. In this work, we demonstrate a similar charge state concentration effect using ion/molecule reactions rather than ion/ion reactions. The rates of ion/molecule reactions cannot be affected in the manner used in conventional ion parking. Rather, to inhibit the progression of ion/molecule proton transfer reactions, the product ions must be removed from the reaction cell as they are formed and transferred to an ion trap where no reactions occur. This is accomplished here with mass-selective axial ejection (MSAE) from one linear ion trap to another. The application of MSAE to inhibit ion/molecule reactions is referred to as "valet parking" as it entails the transport of the ions of interest to a remote location for storage. Valet parking is demonstrated using model proteins to concentrate ion signal dispersed over multiple charge states into largely one charge state. Additionally, it has been applied to a simple two-protein mixture of cytochrome c and myoglobin.
Collapse
Affiliation(s)
- David J. Foreman
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | - Jay Bhanot
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | - Kenneth W. Lee
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| | - Scott A. McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN 47907-2084, USA
| |
Collapse
|
8
|
Foreman DJ, McLuckey SA. Recent Developments in Gas-Phase Ion/Ion Reactions for Analytical Mass Spectrometry. Anal Chem 2020; 92:252-266. [PMID: 31693342 PMCID: PMC6949396 DOI: 10.1021/acs.analchem.9b05014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- David J Foreman
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| | - Scott A McLuckey
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907-2084 , United States
| |
Collapse
|
9
|
Ugrin SA, English AM, Syka JEP, Bai DL, Anderson LC, Shabanowitz J, Hunt DF. Ion-Ion Proton Transfer and Parallel Ion Parking for the Analysis of Mixtures of Intact Proteins on a Modified Orbitrap Mass Analyzer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2163-2173. [PMID: 31392699 PMCID: PMC6805958 DOI: 10.1007/s13361-019-02290-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 05/09/2023]
Abstract
We have enabled parallel ion parking on a modified Orbitrap Elite™ as a way to control ion-ion proton transfer reactions via selective activation of a range of ions. The result is the concentration of the majority of ion current from multiple charge states of each precursor proteoform into a single charge state, maximizing signal intensity and increasing effective sensitivity compared to conventional MS1 spectra. These techniques were applied in an on-line HPLC, data-dependent MS/MS analysis of intact E. coli ribosomal proteins with HCD fragmentation. With one injection, all but two ribosomal proteins were selected for fragmentation and subsequently identified. The techniques described facilitate rapid identification of intact proteins in complex mixtures and an enhanced ability to observe proteins of low abundance.
Collapse
Affiliation(s)
- Scott A Ugrin
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - A Michelle English
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | | | - Dina L Bai
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Jeffrey Shabanowitz
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA
| | - Donald F Hunt
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904, USA.
- Department of Pathology, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
10
|
Schaffer LV, Millikin RJ, Miller RM, Anderson LC, Fellers RT, Ge Y, Kelleher NL, LeDuc RD, Liu X, Payne SH, Sun L, Thomas PM, Tucholski T, Wang Z, Wu S, Wu Z, Yu D, Shortreed MR, Smith LM. Identification and Quantification of Proteoforms by Mass Spectrometry. Proteomics 2019; 19:e1800361. [PMID: 31050378 PMCID: PMC6602557 DOI: 10.1002/pmic.201800361] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/07/2019] [Indexed: 12/29/2022]
Abstract
A proteoform is a defined form of a protein derived from a given gene with a specific amino acid sequence and localized post-translational modifications. In top-down proteomic analyses, proteoforms are identified and quantified through mass spectrometric analysis of intact proteins. Recent technological developments have enabled comprehensive proteoform analyses in complex samples, and an increasing number of laboratories are adopting top-down proteomic workflows. In this review, some recent advances are outlined and current challenges and future directions for the field are discussed.
Collapse
Affiliation(s)
- Leah V Schaffer
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert J Millikin
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Rachel M Miller
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lissa C Anderson
- Ion Cyclotron Resonance Program, National High Magnetic Field Laboratory, Tallahassee, FL, 32310, USA
| | - Ryan T Fellers
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Department of Cell and Regenerative Biology and Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Neil L Kelleher
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry and Molecular Biosciences and the Division of Hematology and Oncology, Northwestern University, Evanston, IL, 60208, USA
| | - Richard D LeDuc
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Xiaowen Liu
- Department of BioHealth Informatics, Indiana University-Purdue University, Indianapolis, IN, 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT, 84602
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Paul M Thomas
- Proteomics Center of Excellence, Northwestern University, Evanston, IL, 60208, USA
| | - Trisha Tucholski
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Zhe Wang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Zhijie Wu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Dahang Yu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Michael R Shortreed
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|