1
|
Britt H, Ben-Younis A, Page N, Thalassinos K. A Conformation-Specific Approach to Native Top-down Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:3203-3213. [PMID: 39453623 PMCID: PMC11622372 DOI: 10.1021/jasms.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Native top-down mass spectrometry is a powerful approach for characterizing proteoforms and has recently been applied to provide similarly powerful insights into protein conformation. Current approaches, however, are limited such that structural insights can only be obtained for the entire conformational landscape in bulk or without any direct conformational measurement. We report a new ion-mobility-enabled method for performing native top-down MS in a conformation-specific manner. Our approach identified conformation-linked differences in backbone dissociation for the model protein calmodulin, which simultaneously informs upon proteoform variations and provides structural insights. We also illustrate that our method can be applied to protein-ligand complexes, either to identify components or to probe ligand-induced structural changes.
Collapse
Affiliation(s)
- Hannah
M. Britt
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Aisha Ben-Younis
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
| | - Nathanael Page
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- LGC
Group, Teddington TW11 0LY, United Kingdom
| | - Konstantinos Thalassinos
- Institute
of Structural and Molecular Biology, University
College London, London WC1E 6BT, United Kingdom
- Institute
of Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United
Kingdom
| |
Collapse
|
2
|
Littlejohn C, Li M, Lam PY, Barrow MP, O’Connor PB. Fellgett Revisited: On the Nature of Noise in Two-Dimensional Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2984-2992. [PMID: 39454130 PMCID: PMC11622379 DOI: 10.1021/jasms.4c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/27/2024]
Abstract
Two-dimensional mass spectrometry (2DMS) is a truly data-independent acquisition technique used in the analysis of complex mixtures; however, the nature of the noise within these spectra is not well understood. In this work, 2DMS is tested for conformity with the Fellgett principle: (signal/noise) ∝ √ (no. of data points). Since 2DMS functions through the modulation of ions through a fragmentation region across many scans, the individual scans are considered data points in this experiment. Random noise was shown to be prevalent as the main source of noise in this experiment with minor systematic noise. This means that the minimum size for a 2DMS spectrum that displays a target fragment ion can be determined using a fast-2D equation detailed herein. The effects of existing denoising algorithms were also found to change the relationship between the signal-to-noise ratio and the scan numbers to be of a quasi-linear nature rather than the square root trend observed before denoising.
Collapse
Affiliation(s)
- Callan Littlejohn
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- AS
CDT, Senate House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Meng Li
- AMS-RTP,
Millburn House, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Pui Yiu Lam
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Mark P. Barrow
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
| | - Peter B. O’Connor
- Department
of Chemistry, University of Warwick, Gibbet Hill Road, Coventry CV4 7AL, United Kingdom
- AMS-RTP,
Millburn House, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
3
|
Qi Y, Fu P, Volmer DA. Analysis of natural organic matter via fourier transform ion cyclotron resonance mass spectrometry: an overview of recent non-petroleum applications. MASS SPECTROMETRY REVIEWS 2022; 41:647-661. [PMID: 32412674 DOI: 10.1002/mas.21634] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/22/2019] [Indexed: 06/11/2023]
Abstract
Among the different techniques for mass analysis, ultra-high-resolution Fourier transform ion cyclotron resonance (FTICR) is the method of choice for highly complex samples, as it offers unrivaled mass accuracy and resolving power, combined with a high degree of flexibility in hybrid instruments as well as for ion activation techniques. FTICR instruments are readily embraced by the biological and biomedical research communities and applied over a wide range of applications for the analysis of biomolecules such as carbohydrates, lipids, nucleic acids, and proteins. In the field of natural organic matter (NOM) analysis, petroleum-related studies currently dominate FTICR-MS applications. Recently, however, there is a growing interest in developing high-performance MS methods for the characterization of NOM samples from natural aquatic and terrestrial environments. Here, we present an overview of FTICR-MS techniques for complex, non-petroleum NOM samples, including data analysis and novel tandem mass spectrometry (MS/MS) methods for structural classifications. © 2020 The Authors. Mass Spectrometry Reviews published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Yulin Qi
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Pingqing Fu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
4
|
Britt HM, Cragnolini T, Thalassinos K. Integration of Mass Spectrometry Data for Structural Biology. Chem Rev 2021; 122:7952-7986. [PMID: 34506113 DOI: 10.1021/acs.chemrev.1c00356] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Mass spectrometry (MS) is increasingly being used to probe the structure and dynamics of proteins and the complexes they form with other macromolecules. There are now several specialized MS methods, each with unique sample preparation, data acquisition, and data processing protocols. Collectively, these methods are referred to as structural MS and include cross-linking, hydrogen-deuterium exchange, hydroxyl radical footprinting, native, ion mobility, and top-down MS. Each of these provides a unique type of structural information, ranging from composition and stoichiometry through to residue level proximity and solvent accessibility. Structural MS has proved particularly beneficial in studying protein classes for which analysis by classic structural biology techniques proves challenging such as glycosylated or intrinsically disordered proteins. To capture the structural details for a particular system, especially larger multiprotein complexes, more than one structural MS method with other structural and biophysical techniques is often required. Key to integrating these diverse data are computational strategies and software solutions to facilitate this process. We provide a background to the structural MS methods and briefly summarize other structural methods and how these are combined with MS. We then describe current state of the art approaches for the integration of structural MS data for structural biology. We quantify how often these methods are used together and provide examples where such combinations have been fruitful. To illustrate the power of integrative approaches, we discuss progress in solving the structures of the proteasome and the nuclear pore complex. We also discuss how information from structural MS, particularly pertaining to protein dynamics, is not currently utilized in integrative workflows and how such information can provide a more accurate picture of the systems studied. We conclude by discussing new developments in the MS and computational fields that will further enable in-cell structural studies.
Collapse
Affiliation(s)
- Hannah M Britt
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| | - Konstantinos Thalassinos
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London WC1E 6BT, United Kingdom.,Institute of Structural and Molecular Biology, Birkbeck College, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
5
|
Schmitt ND, Berger JM, Conway JB, Agar JN. Increasing Top-Down Mass Spectrometry Sequence Coverage by an Order of Magnitude through Optimized Internal Fragment Generation and Assignment. Anal Chem 2021; 93:6355-6362. [DOI: 10.1021/acs.analchem.0c04670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Nicholas D. Schmitt
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Joshua M. Berger
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeremy B. Conway
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jeffrey N. Agar
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Barnett Institute for Chemical and Biological Analysis, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Melfi MT, Kanawati B, Schmitt-Kopplin P, Macchia L, Centonze D, Nardiello D. Investigation of fennel protein extracts by shot-gun Fourier transform ion cyclotron resonance mass spectrometry. Food Res Int 2021; 139:109919. [PMID: 33509486 DOI: 10.1016/j.foodres.2020.109919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/03/2020] [Accepted: 11/21/2020] [Indexed: 10/22/2022]
Abstract
A rapid shot-gun method by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) is proposed for the characterization of fennel proteins. After enzymatic digestion with trypsin, few microliters of extract were analyzed by direct infusion in positive ion mode. A custom-made non-redundant fennel-specific proteome database was derived from the well-known NCBI database; additional proteins belonging to recognized allergenic sources (celery, carrot, parsley, birch, and mugwort) were also included in our database, since patients hypersensitive to these plants could also suffer from fennel allergy. The peptide sequence of each protein from that derived list was theoretically sequenced to produce calculated m/z lists of possible m/z ions after tryptic digestions. Then, by using a home-made Matlab algorithm, those lists were matched with the experimental FT-ICR mass spectrum of the fennel peptide mixture. Finally, Peptide Mass Fingerprint searches confirmed the presence of the matched proteins inside the fennel extract with a total of 70 proteins (61 fennel specific and 9 allergenic proteins).
Collapse
Affiliation(s)
- Maria Teresa Melfi
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Basem Kanawati
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstaedter Landstrasse, 85764 Neuherberg, Germany.
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry (BGC), Helmholtz Zentrum München, Ingolstaedter Landstrasse, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technical University of Munich, Alte Akademie 10, D-85354 Freising, Germany
| | - Luigi Macchia
- Dipartimento dell'Emergenza e dei Trapianti di Organi, Sezione di Allergologia ed Immunologia Clinica, Università degli Studi di Bari, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Diego Centonze
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy
| | - Donatella Nardiello
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università degli Studi di Foggia, Via Napoli, 25, 71122 Foggia, Italy.
| |
Collapse
|
7
|
Affiliation(s)
| | | | - Jennifer S. Brodbelt
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
van Agthoven MA, Kilgour DPA, Lynch AM, Barrow MP, Morgan TE, Wootton CA, Chiron L, Delsuc MA, O'Connor PB. Phase relationships in two-dimensional mass spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:2594-2607. [PMID: 31617086 PMCID: PMC6914722 DOI: 10.1007/s13361-019-02308-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 07/29/2019] [Accepted: 08/02/2019] [Indexed: 05/14/2023]
Abstract
Two-dimensional mass spectrometry (2D MS) is a data-independent tandem mass spectrometry technique in which precursor and fragment ion species can be correlated without the need for prior ion isolation. The behavior of phase in 2D Fourier transform mass spectrometry is investigated with respect to the calculation of phase-corrected absorption-mode 2D mass spectra. 2D MS datasets have a phase that is defined differently in each dimension. In both dimensions, the phase behavior of precursor and fragment ions is found to be different. The dependence of the phase for both precursor and fragment ion signals on various parameters (e.g., modulation frequency, shape of the fragmentation zone) is discussed. Experimental data confirms the theoretical calculations of the phase in each dimension. Understanding the phase relationships in a 2D mass spectrum is beneficial to the development of possible algorithms for phase correction, which may improve both the signal-to-noise ratio and the resolving power of peaks in 2D mass spectra.
Collapse
Affiliation(s)
- Maria A van Agthoven
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - David P A Kilgour
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- School of Science and Technology, Nottingham Trent University, 50 Shakespeare Street, Nottingham, NG1 4FQ, UK
| | - Alice M Lynch
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
- Department of Computer Science, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9SX, UK
| | - Mark P Barrow
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Tomos E Morgan
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Christopher A Wootton
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Lionel Chiron
- CASC4DE, Le Lodge 20 av. du Neuhof, 67100, Strasbourg, France
| | - Marc-André Delsuc
- CASC4DE, Le Lodge 20 av. du Neuhof, 67100, Strasbourg, France
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
9
|
Jia W, Shi L, Zhang F, Chang J, Chu X. High-throughput mass spectrometry scheme for screening and quantification of flavonoids in antioxidant nutraceuticals. J Chromatogr A 2019; 1608:460408. [PMID: 31378531 DOI: 10.1016/j.chroma.2019.460408] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/12/2019] [Accepted: 07/26/2019] [Indexed: 01/03/2023]
Abstract
Antioxidant nutraceuticals functional characteristic science is a challenging field for combining sensitivity and comprehensiveness. A untargeted screening and quantification method based on ultra-high performance liquid chromatography coupled to Quadrupole-Orbitrap high resolution mass spectrometry has been developed for determination of multiple classes of flavonoids in eight-three nutraceuticals samples. The data acquisition is based on a non-target approach of sequential full scan and variable data independent acquisition of twenty consecutive fragmentation events. The flavonoids include flavanols, flavones, flavanones, anthocyanidins, flavonols and isoflavones. A processing strategy is introduced to implementing filtering methods based on data feature extraction, common ion selection, shoulder peak removal, response threshold adjustment, mass shift and characteristic structural fragments evaluation. Confirmation is based on both accurate mass and isotopic assignment of standards, and further quantification is achieved by fragmentation. This scheme allows in depth characterization of flavonoids with the entire fragments.
Collapse
Affiliation(s)
- Wei Jia
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - Lin Shi
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China.
| | - Feng Zhang
- Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| | - James Chang
- Thermo Fisher Scientific, 355 River Oaks Parkway, San Jose, CA, United States.
| | - Xiaogang Chu
- School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, China; Chinese Academy of Inspection and Quarantine, Beijing, 100123, China.
| |
Collapse
|
10
|
Lermyte F, Tsybin YO, O'Connor PB, Loo JA. Top or Middle? Up or Down? Toward a Standard Lexicon for Protein Top-Down and Allied Mass Spectrometry Approaches. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:1149-1157. [PMID: 31073892 PMCID: PMC6591204 DOI: 10.1007/s13361-019-02201-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 05/18/2023]
Abstract
In recent years, there has been increasing interest in top-down mass spectrometry (TDMS) approaches for protein analysis, driven both by technological advancements and efforts such as those by the multinational Consortium for Top-Down Proteomics (CTDP). Today, diverse sample preparation and ionization methods are employed to facilitate TDMS analysis of denatured and native proteins and their complexes. The goals of these studies vary, ranging from protein and proteoform identification, to determination of the binding site of a (non)covalently-bound ligand, and in some cases even with the aim to study the higher order structure of proteins and complexes. Currently, however, no widely accepted terminology exists to precisely and unambiguously distinguish between the different types of TDMS experiments that can be performed. Instead, ad hoc developed terminology is often used, which potentially complicates communication of top-down and allied methods and their results. In this communication, we consider the different types of top-down (or top-down-related) MS experiments that have been performed and reported, and define distinct categories based on the protocol used and type(s) of information that can be obtained. We also consider the different possible conventions for distinguishing between middle- and top-down MS, based on both sample preparation and precursor ion mass. We believe that the proposed framework presented here will prove helpful for researchers to communicate about TDMS and will be an important step toward harmonizing and standardizing this growing field. Graphical Abstract.
Collapse
Affiliation(s)
- Frederik Lermyte
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.
| | - Yury O Tsybin
- Spectroswiss, EPFL Innovation Park, 1015, Lausanne, Switzerland
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Joseph A Loo
- Department of Chemistry and Biochemistry, Department of Biological Chemistry, David Geffen School of Medicine, and UCLA/DOE Institute of Genomics and Proteomics, University of California, Los Angeles, CA, USA
| |
Collapse
|
11
|
van Agthoven MA, Lam YPY, O'Connor PB, Rolando C, Delsuc MA. Two-dimensional mass spectrometry: new perspectives for tandem mass spectrometry. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2019; 48:213-229. [PMID: 30863873 PMCID: PMC6449292 DOI: 10.1007/s00249-019-01348-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Fourier transform ion cyclotron resonance mass analysers (FT-ICR MS) can offer the highest resolutions and mass accuracies in mass spectrometry. Mass spectra acquired in an FT-ICR MS can yield accurate elemental compositions of all compounds in a complex sample. Fragmentation caused by ion-neutral, ion-electron, or ion-photon interactions leads to more detailed structural information on compounds. The most often used method to correlate compounds and their fragment ions is to isolate the precursor ions from the sample before fragmentation. Two-dimensional mass spectrometry (2D MS) offers a method to correlate precursor and fragment ions without requiring precursor isolation. 2D MS therefore enables easy access to the fragmentation patterns of all compounds from complex samples. In this article, the principles of FT-ICR MS are reviewed and the 2D MS experiment is explained. Data processing for 2D MS is detailed, and the interpretation of 2D mass spectra is described.
Collapse
Affiliation(s)
- Maria A van Agthoven
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| | - Yuko P Y Lam
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| | - Peter B O'Connor
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV47AL, UK
| | - Christian Rolando
- MSAP USR 3290, Université Lille, Sciences et Technologies, 59655, Villeneuve d'Ascq Cedex, France
| | - Marc-André Delsuc
- Institut de Génétique, Biologie Moléculaire et Cellulaire, INSERM, U596, CNRS, UMR7104, Université de Strasbourg, 1 rue Laurent Fries, 67404, Illkirch-Graffenstaden, France.
- CASC4DE, 20 avenue du Neuhof, 67100, Strasbourg, France.
| |
Collapse
|
12
|
Floris F, Chiron L, Lynch AM, Barrow MP, Delsuc MA, O’Connor PB. Top-Down Deep Sequencing of Ubiquitin Using Two-Dimensional Mass Spectrometry. Anal Chem 2018; 90:7302-7309. [DOI: 10.1021/acs.analchem.8b00500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Federico Floris
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Lionel Chiron
- CASC4DE, 20 Avenue du Neuhof, 67100, Strasbourg, France
| | - Alice M. Lynch
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Mark P. Barrow
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Marc-André Delsuc
- CASC4DE, 20 Avenue du Neuhof, 67100, Strasbourg, France
- Institut de Génétique
et de Biologie Moléculaire et Cellulaire, Institut National
de la Santé et de la Recherche, U596; Centre National de la
Recherche Scientifique, Unité Mixte de Recherche 7104; Université
de Strasbourg, 67404, Illkirch-Graffenstaden, France
| | - Peter B. O’Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|