1
|
Armentrout PB. Perspective: intrinsic interactions of metal ions with biological molecules as studied by threshold collision-induced dissociation and infrared multiple photon dissociation. Phys Chem Chem Phys 2024. [PMID: 39042103 DOI: 10.1039/d4cp00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In this perspective, gas-phase studies of group 1 monocations and group 12 dications with amino acids and small peptides are highlighted. Although the focus is on two experimental techniques, threshold collision-induced dissociation and infrared multiple photon dissociation action spectroscopy, these methods as well as complementary approaches are summarized. The synergistic interplay with theory, made particularly powerful by the small sizes of the systems explored and the absence of solvent and support, is also elucidated. Importantly, these gas-phase methods permit quantitative insight into the structures and thermodynamics of metal cations interacting with biological molecules. Periodic trends in how these interactions vary as the metal cations get heavier are discussed as are quantitative trends with changes in the amino acid side chain and effects of hydration. Such trends allow these results to transcend the limitations associated with the biomimetic model systems.
Collapse
Affiliation(s)
- P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
2
|
Khawaja N, Hortal Sánchez L, O'Sullivan TR, Bloema J, Napoleoni M, Klenner F, Beinlich A, Hillier J, John T, Postberg F. Laboratory characterization of hydrothermally processed oligopeptides in ice grains emitted by Enceladus and Europa. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2024; 382:20230201. [PMID: 38736335 DOI: 10.1098/rsta.2023.0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/30/2024] [Indexed: 05/14/2024]
Abstract
The Cassini mission provided evidence for a global subsurface ocean and ongoing hydrothermal activity on Enceladus, based on results from Cassini's mass spectrometers. Laboratory simulations of hydrothermal conditions on icy moons are needed to further constrain the composition of ejected ice grains containing hydrothermally altered organic material. Here, we present results from our newly established facility to simulate the processing of ocean material within the temperature range 80-150°C and the pressure range 80-130 bar, representing conditions suggested for the water-rock interface on Enceladus. With this new facility, we investigate the hydrothermal processing of triglycine (GGG) peptide and, for the first time, analyse the extracted samples using laser-induced liquid beam ion desorption (LILBID) mass spectrometry, a laboratory analogue for impact ionization mass spectrometry of ice grains in space. We outline an approach to elucidate hydrothermally processed GGG in ice grains ejected from icy moons based on characteristic differences between GGG anion and cation mass spectra. These differences are linked to hydrothermal processing and thus provide a fingerprint of hydrothermal activity on extraterrestrial bodies. These results will serve as important guidelines for biosignatures potentially obtained by a future Enceladus mission and the SUrface Dust Analyzer (SUDA) instrument onboard Europa Clipper. This article is part of the theme issue 'Dust in the Solar System and beyond'.
Collapse
Affiliation(s)
- Nozair Khawaja
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
- Institute of Space Systems, University of Stuttgart , Stuttgart 70569, Germany
| | - Lucía Hortal Sánchez
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Thomas R O'Sullivan
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Judith Bloema
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Maryse Napoleoni
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Fabian Klenner
- Department of Earth and Space Sciences, University of Washington , Seattle, WA 98195, USA
| | - Andreas Beinlich
- Department of Mineralogy and Petrology, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Jon Hillier
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Timm John
- Department of Mineralogy and Petrology, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| | - Frank Postberg
- Department of Planetary Sciences and Remote Sensing, Institut für Geologische Wissenschaften, Freie Universität Berlin , Malteserstraße, Berlin 12249, Germany
| |
Collapse
|
3
|
Armentrout PB. Energetics and mechanisms for decomposition of cationized amino acids and peptides explored using guided ion beam tandem mass spectrometry. MASS SPECTROMETRY REVIEWS 2023; 42:928-953. [PMID: 34392555 DOI: 10.1002/mas.21723] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Fragmentation studies of cationized amino acids and small peptides as studied using guided ion beam tandem mass spectrometry (GIBMS) are reviewed. After a brief examination of the key attributes of the GIBMS approach, results for a variety of systems are examined, compared, and contrasted. Cationization of amino acids, diglycine, and triglycine with alkali cations generally leads to dissociations in which the intact biomolecule is lost. Exceptions include most lithiated species as well as a few examples for sodiated and one example for potassiated species. Like the lithiated species, cationization by protons leads to numerous dissociation channels. Results for protonated glycine, cysteine, asparagine, diglycine, and a series of tripeptides are reviewed, along with the thermodynamic consequences that can be gleaned. Finally, the important physiological process of the deamidation of asparagine (Asn) residues is explored by the comparison of five dipeptides in which the C-terminal partner (AsnXxx) is altered. The GIBMS thermochemistry is shown to correlate well with kinetic results from solution phase studies.
Collapse
Affiliation(s)
- P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
4
|
Jones RM, Nilsson T, Walker S, Armentrout PB. Potassium Binding Interactions with Aliphatic Amino Acids: Thermodynamic and Entropic Effects Analyzed via a Guided Ion Beam and Computational Study. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1427-1442. [PMID: 35535863 DOI: 10.1021/jasms.2c00079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Noncovalent interactions between alkali metals and amino acids are critical for many biological processes, especially for proper function of protein ion channels; however, many precise binding affinities between alkali metals and amino acids still need to be measured. This study addresses this need by using threshold collision-induced dissociation with a guided ion beam tandem mass spectrometer to measure binding affinities between potassium cations and the aliphatic amino acids: Gly, Ala, hAla, Val, Leu, and Ile. These measurements are supplemented by theoretical calculations and include commentary on effects of enthalpy, entropy, and structural preference. Notably, all levels of theory indicate that the lowest-lying isomers at 298 K have K+ binding to the carbonyl oxygen in either a monodentate ([CO]) or bidentate ([CO,OH]) fashion, isomers that are linked in a double-well potential. This complicates the analysis of the data, although does not greatly influence the final results. Analysis of the resulting cross sections includes accounting for multiple ion-molecule collisions, internal energy of reactant ions, and unimolecular decay rates. The resulting experimental bond dissociation energies generally increase as the polarizability of the amino acid increases, results that agree well with quantum chemical calculations done at the B3LYP, B3P86, and MP2(full) levels of theory, with B3LYP-GD3BJ predicting systematically larger values.
Collapse
Affiliation(s)
- Roland M Jones
- Department of Chemistry, University of Utah, 315 South 1400 East Rm 2020, Salt Lake City, Utah 84112, United States
| | - Taylor Nilsson
- Department of Chemistry, University of Utah, 315 South 1400 East Rm 2020, Salt Lake City, Utah 84112, United States
| | - Samantha Walker
- Department of Chemistry, University of Utah, 315 South 1400 East Rm 2020, Salt Lake City, Utah 84112, United States
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 South 1400 East Rm 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
5
|
Mookherjee A, Armentrout PB. Thermodynamics and Reaction Mechanisms for Decomposition of a Simple Protonated Tripeptide, H +GGA: From H +GGG to H +GAG to H +GGA. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:355-368. [PMID: 34981933 DOI: 10.1021/jasms.1c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We present a thorough characterization of fragmentations observed in threshold collision-induced dissociation (TCID) experiments of protonated glycylglycylalanine (H+GGA) with Xe using a guided ion beam tandem mass spectrometer. Kinetic energy dependent cross sections for nine ionic products were obtained and analyzed to provide 0 K barriers for the five primary products, [b2]+, [y1 + 2H]+, [b3]+, [y2 + 2H]+, and [a1]+; and four secondary products, [a2]+, [a3]+, high-energy [y1 + 2H]+, and CH3CHNH2+, after accounting for multiple ion-molecule collisions, the internal energy of reactant ions, unimolecular decay rates, competition between channels, and sequential dissociations. Relaxed potential energy surface scans performed at the B3LYP-GD3BJ/6-311+G(d,p) level of theory are used to identify transition states (TSs) and intermediates of the five primary and three secondary products (with the mechanism of the other secondary product previously established). Geometry optimizations and single point energy calculations of reactants, products, intermediates, and TSs were performed at several levels of theory. These theoretical energies are compared with experimental threshold energies and found to give reasonable agreement, with B3LYP-GD3BJ and M06-2X levels of theory performing slightly better than MP2 and better than B3LYP. The results obtained here are compared with previous results for decomposition of H+GGG and H+GAG to probe the effect of changing the amino acid sequence. Methylation in H+GGA has a significant effect on the competition between the primary sequence products, [b2]+ and [y1 + 2H]+, suppressing the [b2]+ cross section by raising its threshold energy, while enhancing that of [y1 + 2H]+ by lowering its threshold energy.
Collapse
Affiliation(s)
- Abhigya Mookherjee
- Department of Chemistry, University of Utah, 315 S. 1400 E., Room 2020, Salt Lake City, Utah 84112, United States
| | - P B Armentrout
- Department of Chemistry, University of Utah, 315 S. 1400 E., Room 2020, Salt Lake City, Utah 84112, United States
| |
Collapse
|
6
|
Guan S, Bythell BJ. Size Dependent Fragmentation Chemistry of Short Doubly Protonated Tryptic Peptides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:1020-1032. [PMID: 33779179 DOI: 10.1021/jasms.1c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tandem mass spectrometry of electrospray ionized multiply charged peptide ions is commonly used to identify the sequence of peptide(s) and infer the identity of source protein(s). Doubly protonated peptide ions are consistently the most efficiently sequenced ions following collision-induced dissociation of peptides generated by tryptic digestion. While the broad characteristics of longer (N ≥ 8 residue) doubly protonated peptides have been investigated, there is comparatively little data on shorter systems where charge repulsion should exhibit the greatest influence on the dissociation chemistry. To address this gap and further understand the chemistry underlying collisional-dissociation of doubly charged tryptic peptides, two series of analytes ([GxR+2H]2+ and [AxR+2H]2+, x = 2-5) were investigated experimentally and with theory. We find distinct differences in the preference of bond cleavage sites for these peptides as a function of size and to a lesser extent composition. Density functional calculations at two levels of theory predict that the threshold relative energies required for bond cleavages at the same site for peptides of different size are quite similar (for example, b2-yN-2). In isolation, this finding is inconsistent with experiment. However, the predicted extent of entropy change of these reactions is size dependent. Subsequent RRKM rate constant calculations provide a far clearer picture of the kinetics of the competing bond cleavage reactions enabling rationalization of experimental findings. The M06-2X data were substantially more consistent with experiment than were the B3LYP data.
Collapse
Affiliation(s)
- Shanshan Guan
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| | - Benjamin J Bythell
- Department of Chemistry and Biochemistry, Ohio University, 307 Chemistry Building, Athens, Ohio 45701, United States
- Department of Chemistry and Biochemistry, University of Missouri-St. Louis, 1 University Boulevard, St. Louis, Missouri 63121, United States
| |
Collapse
|
7
|
Demireva M, Armentrout PB. Relative Energetics of the Gas Phase Protomers of p-Aminobenzoic Acid and the Effect of Protonation Site on Fragmentation. J Phys Chem A 2021; 125:2849-2865. [DOI: 10.1021/acs.jpca.0c11540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Maria Demireva
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - P. B. Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|