1
|
Zhang Q, Wei Z, Jia X. Controllable detection threshold achieved through the toehold switch system in a mercury ion whole-cell biosensor. Biosens Bioelectron 2024; 256:116283. [PMID: 38608495 DOI: 10.1016/j.bios.2024.116283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Due to the toxicity of mercury and its harmful effects on human health, it is essential to establish a low-cost, highly sensitive and highly specific monitoring method with a wide detection range, ideally with a simple visual readout. In this study, a whole-cell biosensor with adjustable detection limits was developed for the detection of mercury ions in water samples, allowing controllable threshold detection with an expanded detection range. Gene circuits were constructed by combining the toehold switch system with lactose operon, mercury-ion-specific operon, and inducible red fluorescent protein gene. Using MATLAB for design and selection, a total of eleven dual-input single-output sensing logic circuits were obtained based on the basic logic of gene circuit construction. Then, biosensor DTS-3 was selected based on its fluorescence response at different isopropyl β-D-Thiogalactoside (IPTG) concentrations, exhibiting the controllable detection threshold. At 5-20 μM IPTG, DTS-3 can achieve variable threshold detection in the range of 0.005-0.0075, 0.06-0.08, 1-2, and 4-6 μM mercury ion concentrations, respectively. Specificity experiments demonstrated that DTS-3 exhibits good specificity, not showing fluorescence response changes compared with other metal ions. Furthermore spiked sample experiments demonstrated its good resistance to interference, allowing it to distinguish mercury ion concentrations as low as 7.5 nM by the naked eye and 5 nM using a microplate reader. This study confirms the feasibility and performance of biosensor with controllable detection threshold, providing a new detection method and new ideas for expanding the detection range of biosensors while ensuring rapid and convenient measurements without compromising sensitivity.
Collapse
Affiliation(s)
- Qinglong Zhang
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Zixiang Wei
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China; Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, PR China.
| |
Collapse
|
2
|
Abdelhamid HN. An introductory review on advanced multifunctional materials. Heliyon 2023; 9:e18060. [PMID: 37496901 PMCID: PMC10366438 DOI: 10.1016/j.heliyon.2023.e18060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/28/2023] Open
Abstract
This review summarizes the applications of some of the advanced materials. It included the synthesis of several nanoparticles such as metal oxide nanoparticles (e.g., Fe3O4, ZnO, ZrOSO4, MoO3-x, CuO, AgFeO2, Co3O4, CeO2, SiO2, and CuFeO2); metal hydroxide nanosheets (e.g., Zn5(OH)8(NO3)2·2H2O, Zn(OH)(NO3)·H2O, and Zn5(OH)8(NO3)2); metallic nanoparticles (Ag, Au, Pd, and Pt); carbon-based nanomaterials (graphene, graphene oxide (GO), graphitic carbon nitride (g-C3N4), and carbon dots (CDs)); biopolymers (cellulose, nanocellulose, TEMPO-oxidized cellulose nanofibers (TOCNFs), and chitosan); organic polymers (e.g. covalent-organic frameworks (COFs)); and hybrid materials (e.g. metal-organic frameworks (MOFs)). Most of these materials were applied in several fields such as environmental-based technologies (e.g., water remediation, air purification, gas storage), energy (production of hydrogen, dimethyl ether, solar cells, and supercapacitors), and biomedical sectors (sensing, biosensing, cancer therapy, and drug delivery). They can be used as efficient adsorbents and catalysts to remove emerging contaminants e.g., inorganic (i.e., heavy metals) and organic (e.g., dyes, antibiotics, pesticides, and oils in water via adsorption. They can be also used as catalysts for catalytic degradation reactions such as redox reactions of pollutants. They can be used as filters for air purification by capturing carbon dioxide (CO2) and volatile organic compounds (VOCs). They can be used for hydrogen production via water splitting, alcohol oxidation, and hydrolysis of NaBH4. Nanomedicine for some of these materials was also included being an effective agent as an antibacterial, nanocarrier for drug delivery, and probe for biosensing.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Chemistry Department-Faculty of Science, Assiut University, Egypt
- Nanotechnology Research Centre (NTRC), The British University in Egypt (BUE), Suez Desert Road, El-Sherouk City, Cairo 11837, Egypt
| |
Collapse
|
3
|
Plasmonic Nano Silver: An Efficient Colorimetric Sensor for the Selective Detection of Hg2+ Ions in Real Samples. COATINGS 2022. [DOI: 10.3390/coatings12060763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Environmental pollution caused by heavy metal ions has become a major health problem across the world. In this study, a selective colorimetric sensor based on starch functionalized silver nanoparticles (St-Ag NPs) for rapid detection of Hg2+ in real samples was developed. The environmentally friendly green approach was utilized to synthesize starch functionalized silver nanoparticles (St-AgNPs). A multi-technique approach involving UV-Vis absorption spectroscopy, Fourier transform infrared (FT-IR), X-ray diffraction (XRD), and scanning electron microscope (SEM) was used for the characterization of St-Ag NPs. These starch functionalized AgNPs were tested for the detection of heavy metals at 25 °C. The screening process revealed clear changes in the AgNPs color and absorption intensity only in the presence of Hg2+ due to the redox reaction between Ag0 and Hg2+. The color and absorption intensity of nanoparticles remain unchanged in the presence of all the other tested metals ion. The proposed method has strong selectivity and sensitivity to Hg2+ ions, with a detection limit of 1 ppm revealed by UV-visible spectrophotometry. The proposed procedure was found to be successful for the detection of Hg2+ in real samples of tap water.
Collapse
|
4
|
Wang Q, Zhou H, Hao T, Hu K, Qin L, Ren X, Guo Z, Wang S, Hu Y. A fully integrated fast scan cyclic voltammetry electrochemical method: Improvements in reaction kinetics and signal stability for specific Ag(I) and Hg(II) analysis. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Li L, Qiu Z, Qi Y, Zhao D, Ali I, Sun C, Xu L, Zheng Z, Ma C. AuNPs/NiFe-LDHs-assisted laser desorption/ionization mass spectrometry for efficient analysis of metronidazole and its metabolites in water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126893. [PMID: 34479085 DOI: 10.1016/j.jhazmat.2021.126893] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/21/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Gold nanoparticles (AuNPs) have been widely used as laser desorption/ionization mass spectrometry (LDI-MS) nanomaterials for the analysis of low-molecular-weight samples. Nickel/iron-layered double hydroxides (NiFe-LDHs) nanosheets can support the anchoring of AuNPs and enhance the ability of desorption/ionization. Their hybrid nanocomposites are expected to produce synergistic effects to improve the performance of LDI-MS. In this work, a novel AuNPs/NiFe-LDHs nanomaterial was synthesized by self-assembly method and characterized based on TEM, SEM, XPS, UV-vis and FTIR-ATR. AuNPs/NiFe-LDHs assisted LDI-TOF MS exhibited higher peak intensity and lower background noise compared with conventional organic matrices. Furthermore, excellent salt and protein tolerance, good repeatability and quantification were observed when MNZ and its metabolites were detected in the range of 1-50 ng·μL-1 (R2 > 0.98), with LODs and LOQs of 0.5 ng·μL-1 and 1 ng·μL-1, respectively. This nanocomposite could also be used for the analysis of some other small molecules, such as antibiotics, sugars, amino acids and pesticides, demonstrating the potential to detect a variety of environmental chemicals. Taken together, the developed method combined the advantages of two nanomaterials and can provide rapid and accurate analysis of MNZ and its metabolites in water samples, as well as some other small molecules.
Collapse
Affiliation(s)
- Lingyu Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China; Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China
| | - Zhichang Qiu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Yuanfeng Qi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, PR China
| | - Dantong Zhao
- Heze Institute for Food and Drug Control, Heze 274000, Shandong, PR China
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit-Baltistan, Gilgit 15100, Pakistan
| | - Chenglong Sun
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China
| | - Longhua Xu
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China
| | - Zhenjia Zheng
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018, Shandong, PR China.
| | - Chunxia Ma
- Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, Shandong, PR China; School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, PR China.
| |
Collapse
|
6
|
Cellulose–metal organic frameworks (CelloMOFs) hybrid materials and their multifaceted Applications: A review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214263] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
7
|
Abdelhamid HN. Zeolitic imidazolate frameworks (ZIF‐8, ZIF‐67, and ZIF‐L) for hydrogen production. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6319] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry Assiut University Assiut Egypt
| |
Collapse
|
8
|
Abdelhamid HN, Sharmoukh W. Intrinsic catalase-mimicking MOFzyme for sensitive detection of hydrogen peroxide and ferric ions. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105873] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Habib A, Bi L, Hong H, Wen L. Challenges and Strategies of Chemical Analysis of Drugs of Abuse and Explosives by Mass Spectrometry. Front Chem 2021; 8:598487. [PMID: 33537286 PMCID: PMC7847941 DOI: 10.3389/fchem.2020.598487] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/04/2020] [Indexed: 01/25/2023] Open
Abstract
In analytical science, mass spectrometry (MS) is known as a "gold analytical tool" because of its unique character of providing the direct molecular structural information of the relevant analyte molecules. Therefore, MS technique has widely been used in all branches of chemistry along with in proteomics, metabolomics, genomics, lipidomics, environmental monitoring etc. Mass spectrometry-based methods are very much needed for fast and reliable detection and quantification of drugs of abuse and explosives in order to provide fingerprint information for criminal investigation as well as for public security and safety at public places, respectively. Most of the compounds exist as their neutral form in nature except proteins, peptides, nucleic acids that are in ionic forms intrinsically. In MS, ion source is the heart of the MS that is used for ionizing the electrically neutral molecules. Performance of MS in terms of sensitivity and selectivity depends mainly on the efficiency of the ionization source. Accordingly, much attention has been paid to develop efficient ion sources for a wide range of compounds. Unfortunately, none of the commercial ion sources can be used for ionization of different types of compounds. Moreover, in MS, analyte molecules must be released into the gaseous phase and then ionize by using a suitable ion source for detection/quantification. Under these circumstances, fabrication of new ambient ion source and ultrasonic cutter blade-based non-thermal and thermal desorption methods have been taken into account. In this paper, challenges and strategies of mass spectrometry analysis of the drugs of abuse and explosives through fabrication of ambient ionization sources and new desorption methods for non-volatile compounds have been described. We will focus the literature progress mostly in the last decade and present our views for the future study.
Collapse
Affiliation(s)
- Ahsan Habib
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- Department of Chemistry, University of Dhaka, Dhaka, Bangladesh
| | - Lei Bi
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| | - Huanhuan Hong
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| | - Luhong Wen
- The Research Institute of Advanced Technologies, Ningbo University, Ningbo, China
- China Innovation Instrument Co., Ltd., Ningbo, China
| |
Collapse
|
10
|
Chae A, Lee G, Koh DY, Yang CM, Lee S, Kim YK. Polyacrylonitrile-based carbon nanofibers as a matrix for laser desorption/ionization time-of-flight mass spectrometric analysis of small molecules under both positive and negative ionization modes. Anal Bioanal Chem 2021; 413:1193-1202. [PMID: 33403427 DOI: 10.1007/s00216-020-03083-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/25/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022]
Abstract
Carbon fiber (CNF), prepared by carbonization of electrospun polyacrylonitrile (PAN) fibers, is systematically investigated as a mediator to replace conventional organic matrices for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-MS). CNF exhibits a high salt tolerance, sensitivity, and resolution for organic matrix-free laser desorption/ionization time-of-flight mass spectrometry (LDI-MS) analysis of various analytes under both positive and negative ionization modes. Especially, saccharides, a neutral molecule having low negative ionization efficiency, are successfully detected with CNF. Taken together, this study clearly demonstrates CNF is a promising material to develop an efficient and universal platform for LDI-MS analysis regardless of preferential ionization modes of analytes. Graphical abstract.
Collapse
Affiliation(s)
- Ari Chae
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea.,Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 2921, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Gwanwon Lee
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Dong-Yeun Koh
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 2921, Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Cheol-Min Yang
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea
| | - Sungho Lee
- Carbon Composite Materials Research Center, Institute of Advanced Composite Materials, Korea Institute of Science and Technology (KIST), 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeollabuk-do, 55324, Republic of Korea. .,Department of Nano Material Engineering, KIST School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon, 34113, Republic of Korea.
| | - Young-Kwan Kim
- Department of Chemistry, Dongguk University-Seoul, 30 Pildong-ro, Jung-gu, Seoul, 04620, Republic of Korea.
| |
Collapse
|
11
|
Abdelhamid HN, Badr G. Nanobiotechnology as a platform for the diagnosis of COVID-19: a review. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2021; 6:19. [PMCID: PMC7988262 DOI: 10.1007/s41204-021-00109-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/21/2021] [Indexed: 12/12/2022]
Abstract
A sensitive method for diagnosing co ronavi rus d isease 2019 (COVID-19) is highly required to fight the current and future global health threats due to s evere a cute r espiratory s yndrome c oronavirus 2 (SARS-CoV 2). However, most of the current methods exhibited high false‐negative rates, resulting in patient misdiagnosis and impeding early treatment. Nanoparticles show promising performance and great potential to serve as a platform for diagnosing viral infection in a short time and with high sensitivity. This review highlighted the potential of nanoparticles as platforms for the diagnosis of COVID-19. Nanoparticles such as gold nanoparticles, magnetic nanoparticles, and graphene (G) were applied to detect SARS-CoV 2. They have been used for molecular-based diagnosis methods and serological methods. Nanoparticles improved specificity and shorten the time required for the diagnosis. They may be implemented into small devices that facilitate the self-diagnosis at home or in places such as airports and shops. Nanoparticles-based methods can be used for the analysis of virus-contaminated samples from a patient, surface, and air. The advantages and challenges were discussed to introduce useful information for designing a sensitive, fast, and low-cost diagnostic method. This review aims to present a helpful survey for the lesson learned from handling this outbreak to prepare ourself for future pandemic.
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Faculty of Science, Assiut University, Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
12
|
Abdelhamid HN, Goda MN, Said AEAA. Selective dehydrogenation of isopropanol on carbonized metal–organic frameworks. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.nanoso.2020.100605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Yang Y, Xia Y. Self-assembled matrix fabricated by Fe-metal organic frameworks and carboxymethyl cellulose for the determination of small molecules by MALDI-TOF MS. Mikrochim Acta 2020; 187:445. [PMID: 32666306 DOI: 10.1007/s00604-020-04397-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/16/2020] [Indexed: 11/24/2022]
Abstract
A nanoprobe of laser desorption/ionization-time of flight mass spectrometry (LDI-TOF MS) for the determination of small molecules was developed that is based on the composition of Fe-metal organic frameworks (Fe-MOFs) and carboxymethyl cellulose-Na (CMC-Na). This material is a good adsorbent for small molecules via hydrogen bonding and π-interactions; we detected three molecules, dopamine, glyphosate, and pyrene. The detection limits for these compounds are 0.01 mg L-1, 1.50 μg L-1, and 0.01 μg L-1, respectively; the recoveries are 85-117%, 81-127%, and 89-115%, respectively. The relative standard deviations (~ 15%) and coefficients of determination of the calibration plot (~ 0.97) are satisfactory. The applicability of the chip for practical samples is demonstrated by quantifying pyrene in domestic water and polluted lake water; the recoveries are about 90~117% and 85~125% (n = 5), respectively; the RSDs are 9.4% and 13.5%, respectively. Graphical abstract.
Collapse
Affiliation(s)
- Yingchen Yang
- Research Center for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yan Xia
- Research Center for Analytical Science, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
14
|
Abdelhamid HN. Salts Induced Formation of Hierarchical Porous ZIF‐8 and Their Applications for CO
2
Sorption and Hydrogen Generation via NaBH
4
Hydrolysis. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000031] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials LaboratoryDepartment of ChemistryAssiut University Assiut 71516 Egypt
| |
Collapse
|
15
|
Goda MN, Abdelhamid HN, Said AEAA. Zirconium Oxide Sulfate-Carbon (ZrOSO 4@C) Derived from Carbonized UiO-66 for Selective Production of Dimethyl Ether. ACS APPLIED MATERIALS & INTERFACES 2020; 12:646-653. [PMID: 31823597 DOI: 10.1021/acsami.9b17520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methanol dehydration process to dimethyl ether (DME) has been considered as one of the main routes to produce clean fuel, that is, DME. Thus, efficient catalysts are highly required for selective production of DME. Herein, UiO-66 was used as a precursor for the synthesis of zirconium oxide sulfate embedded carbon (ZrOSO4@C). The synthesis method involves a one-step carbonization of UiO-66 in the presence of sulfuric acid (10 wt %). Material characterizations using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier transform infrared, and Raman spectroscopy approve the formation of the high crystalline phase of ZrOSO4@C. Nitrogen adsorption-desorption isotherms and high-resolution transmission electron microscopy confirm the mesopore structure of the materials. Acidity analysis using pyridine temperature-programmed desorption and isopropanol dehydration corroborates that ZrOSO4@C has weak and intermediate acidic sites making ZrOSO4@C an effective catalyst for methanol dehydration to DME. The materials offered full conversion (100%) with excellent selectivity (100%) at a relatively low temperature (250 °C). The catalyst exhibited a long-term stability for 120 h. Based on these results, DME is produced efficiently in terms of conversion, selectivity, and long-term stability.
Collapse
|
16
|
Abdelhamid HN. Hierarchical porous ZIF-8 for hydrogen production via the hydrolysis of sodium borohydride. Dalton Trans 2020; 49:4416-4424. [DOI: 10.1039/d0dt00145g] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Terephthalic acid (TPA) is used for the synthesis of hierarchical porous zeolitic imidazolate framework (HPZIF-8) which shows high catalytic activity for the hydrolysis of NaBH4 (2333 mLH2 min−1 gcat−1).
Collapse
Affiliation(s)
- Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory
- Department of Chemistry
- Assiut University
- Assiut
- Egypt
| |
Collapse
|