1
|
Delsmann J, Schmidt B, Oheim R, Amling M, Rolvien T, Siebert U. Bone mineral density and microarchitecture change during skeletal growth in harbor seals (Phoca vitulina) from the German coast. Sci Rep 2023; 13:7196. [PMID: 37137898 PMCID: PMC10156659 DOI: 10.1038/s41598-023-33911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
Across species, the skeletal system shares mutual functions, including the protection of inner organs, structural basis for locomotion, and acting as an endocrine organ, thus being of pivotal importance for survival. However, insights into skeletal characteristics of marine mammals are limited, especially in the growing skeleton. Harbor seals (Phoca vitulina) are common marine mammals in the North and Baltic Seas and are suitable indicators of the condition of their ecosystem. Here, we analyzed whole-body areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and lumbar vertebrae by high-resolution peripheral quantitative computed tomography (HR-pQCT) in neonate, juvenile, and adult harbor seals. Along skeletal growth, an increase in two-dimensional aBMD by DXA was paralleled by three-dimensional volumetric BMD by HR-pQCT, which could be attributed to an increasing trabecular thickness while trabecular number remained constant. Strong associations were observed between body dimensions (weight and length) and aBMD and trabecular microarchitecture (R2 = 0.71-0.92, all p < 0.001). To validate the results of the DXA measurement (i.e., the standard method used worldwide to diagnose osteoporosis in humans), we performed linear regression analyses with the three-dimensional measurements from the HR-pQCT method, which revealed strong associations between the two imaging techniques (e.g., aBMD and Tb.Th: R2 = 0.96, p < 0.0001). Taken together, our findings highlight the importance of systematic skeletal investigations in marine mammals during growth, illustrating the high accuracy of DXA in this context. Regardless of the limited sample size, the observed trabecular thickening is likely to represent a distinct pattern of vertebral bone maturation. As differences in nutritional status, among other factors, are likely to affect skeletal health, it appears essential to routinely perform skeletal assessments in marine mammals. Placing the results in the context of environmental exposures may allow effective measures to protect their populations.
Collapse
Affiliation(s)
- Julian Delsmann
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
- Division of Orthopedics, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25746, Büsum, Germany
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529, Hamburg, Germany
| | - Tim Rolvien
- Division of Orthopedics, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25746, Büsum, Germany.
| |
Collapse
|
2
|
Schmidt B, Sonne C, Nachtsheim D, Dietz R, Oheim R, Rolvien T, Persson S, Amling M, Siebert U. Variation in skull bone mineral density of ringed seals (Phoca hispida) from the Gulf of Bothnia and West Greenland between 1829 and 2019. ENVIRONMENT INTERNATIONAL 2020; 143:105968. [PMID: 32702596 DOI: 10.1016/j.envint.2020.105968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 05/21/2023]
Abstract
Bone is remodelled constantly through a balance of bone formation and resorption. This process can be affected by various factors such as hormones, vitamins, nutrients and environmental factors, which can create an imbalance resulting in systemic or local bone alteration. The aim of the present study was to analyse the changes in bone mineral density (BMD) over time in skulls of ringed seals (Pusa hispida) from the Baltic and Greenland using museum samples. Overall, 303 skulls (102 Male, 89 Female, 112 unknown) were used for bone investigations and were divided into three periods according to collection year: before 1958 (n = 167), between 1958 and 1989 (n = 40) and after 1994 up to 2019 (n = 96). All skulls were examined by dual-energy X-ray absorptiometry to obtain the BMD. Skull BMD of the Baltic seals was positively correlated with the historical polychlorinated biphenyls (PCB) contamination having potential effects on the constitution of bones. BMD fluctuated between the three study periods (LM: p-value < 0.001, F-value = 47.5) with the lowest BMD found between 1897 and 1957, in the Gulf of Bothnia, where the highest peak of contaminant concentration was in the second period. BMD levels increased with increasing PCB concentration (LM: p < 0.001). The Greenland population showed significant lower BMD levels in the pollution and post-pollution period than the Baltic population (LM: p < 0.001). It also revealed a higher BMD in males than in females (LM: p = 0.03). In conclusion, the variations between 1829 and 2019 in the Baltic Sea and Greenland may to a certain extent reflect normal fluctuations; however, this study revealed several factors affecting BMD, including sex and PCB levels.
Collapse
Affiliation(s)
- Britta Schmidt
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Christian Sonne
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Dominik Nachtsheim
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany
| | - Rune Dietz
- Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark
| | - Ralf Oheim
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany; Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Sara Persson
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, P.O. Box 50007, SE-104 05 Stockholm, Sweden
| | - Michael Amling
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Lottestr. 59, 22529 Hamburg, Germany
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Werftstr. 6, 25761 Büsum, Germany; Marine Mammal Research, Department of Bioscience, Aarhus University, Frederiksborgvej 399, P.O. Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
3
|
Sonne C, Siebert U, Gonnsen K, Desforges JP, Eulaers I, Persson S, Roos A, Bäcklin BM, Kauhala K, Tange Olsen M, Harding KC, Treu G, Galatius A, Andersen-Ranberg E, Gross S, Lakemeyer J, Lehnert K, Lam SS, Peng W, Dietz R. Health effects from contaminant exposure in Baltic Sea birds and marine mammals: A review. ENVIRONMENT INTERNATIONAL 2020; 139:105725. [PMID: 32311628 DOI: 10.1016/j.envint.2020.105725] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/29/2020] [Accepted: 04/04/2020] [Indexed: 05/21/2023]
Abstract
Here we review contaminant exposure and related health effects in six selected Baltic key species. Sentinel species included are common eider, white-tailed eagle, harbour porpoise, harbour seal, ringed seal and grey seal. The review represents the first attempt of summarizing available information and baseline data for these biomonitoring key species exposed to industrial hazardous substances focusing on anthropogenic persistent organic pollutants (POPs). There was only limited information available for white-tailed eagles and common eider while extensive information exist on POP exposure and health effects in the four marine mammal species. Here we report organ-tissue endpoints (pathologies) and multiple biomarkers used to evaluate health and exposure of key species to POPs, respectively, over the past several decades during which episodes of significant population declines have been reported. Our review shows that POP exposure affects the reproductive system and survival through immune suppression and endocrine disruption, which have led to population-level effects on seals and white-tailed eagles in the Baltic. It is notable that many legacy contaminants, which have been banned for decades, still appear to affect Baltic wildlife. With respect to common eiders, changes in food composition, quality and contaminant exposure seem to have population effects which need to be investigated further, especially during the incubation period where the birds fast. Since new industrial contaminants continuously leak into the environment, we recommend continued monitoring of them in sentinel species in the Baltic, identifying possible effects linked to climate change, and modelling of population level effects of contaminants and climate change.
Collapse
Affiliation(s)
- Christian Sonne
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou CN-450002, China.
| | - Ursula Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Katharina Gonnsen
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Jean-Pierre Desforges
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Igor Eulaers
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Sara Persson
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, Frescativägen 40, SE-104 05 Stockholm, Sweden.
| | - Anna Roos
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, Frescativägen 40, SE-104 05 Stockholm, Sweden.
| | - Britt-Marie Bäcklin
- Swedish Museum of Natural History, Department of Environmental Research and Monitoring, Frescativägen 40, SE-104 05 Stockholm, Sweden.
| | - Kaarina Kauhala
- Natural Resources Institute Finland, Luke. Itäinen Pitkäkatu 4 A, FI-20520 Turku, Finland.
| | - Morten Tange Olsen
- Evolutionary Genomics, Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K, Denmark.
| | - Karin C Harding
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 25 SE-405 30 Gothenburg, Sweden.
| | - Gabriele Treu
- German Environment Agency, Section Chemicals, Wörlitzer Platz 1, 06844 Dessau-Roßlau, Germany.
| | - Anders Galatius
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| | - Emilie Andersen-Ranberg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Faculty of Health, Dyrlægevej 16, 1870 Frederiksberg C, Denmark.
| | - Stephanie Gross
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Jan Lakemeyer
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Kristina Lehnert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Werftstr. 6, 25761 Büsum, Germany.
| | - Su Shiung Lam
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou CN-450002, China; Pyrolysis Technology Research Group, Institute of Tropical Aquaculture and Fisheries (Akuatrop) & Institute of Tropical Biodiversity and Sustainable Development (Bio-D Tropika), Universiti Malaysia Terengganu, MY-21030 Kuala Terengganu, Terengganu, Malaysia.
| | - Wanxi Peng
- Henan Province Engineering Research Center for Biomass Value-added Products, School of Forestry, Henan Agricultural University, Zhengzhou CN-450002, China
| | - Rune Dietz
- Department of Bioscience, Arctic Research Centre (ARC), Aarhus University, Faculty of Science and Technology, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
4
|
Kahle P, Rolvien T, Kierdorf H, Roos A, Siebert U, Kierdorf U. Age-related changes in size, bone microarchitecture and volumetric bone mineral density of the mandible in the harbor seal (Phoca vitulina). PLoS One 2019; 14:e0224480. [PMID: 31648278 PMCID: PMC6812799 DOI: 10.1371/journal.pone.0224480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/15/2019] [Indexed: 12/05/2022] Open
Abstract
Detailed knowledge of age-related changes in the structure and mineralization of bones is important for interpreting osseous changes in wild mammals caused by exposure to environmental contaminants. This study analyzed mandibular size, microarchitecture and volumetric bone mineral density (vBMD) in harbor seals (n = 93, age range 0.5 months to 25 years) from the German North Sea. Bone microarchitecture and vBMD were assessed using high-resolution peripheral quantitative computed tomography (HR-pQCT). Significant differences were observed between the analyzed age classes (i) young juveniles (0.5–10 months), (ii) yearlings (12–23 months), and (iii) adults (12–25 years) for several of the variables, indicating an overall increase in cortical and trabecular area, cortical thickness and total and cortical vBMD with age. Furthermore, for juvenile animals (≤ 23 months), significant positive correlations with age were observed for mandible length and perimeter, cortical area, cortical thickness, trabecular separation, and total and cortical vBMD. The findings demonstrate a rapid increase in overall size, cortical dimensions and the degree of mineralization of the harbor seal mandible during the first two years after birth. Negative correlations with age existed for trabecular number and thickness as well as for trabecular bone volume fraction in the juveniles. The findings suggest a reduction in trabecular bone volume fraction with age, due to the bone trabeculae becoming thinner, less numerous and more widely spaced. Given the strong age dependence of most analyzed parameters, it is recommended to standardize samples with respect to age in future studies comparing microarchitecture and mineralization of harbor seal mandibles from different populations or different collection periods.
Collapse
Affiliation(s)
- Patricia Kahle
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Tim Rolvien
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Orthopedics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | - Anna Roos
- Department of Contaminant Research, Swedish Museum of Natural History, Stockholm, Sweden
| | - Ursula Siebert
- Institute of Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
- * E-mail:
| |
Collapse
|
5
|
Kierdorf U, Olsen MT, Kahle P, Ludolphy C, Kierdorf H. Dental pulp exposure, periapical inflammation and suppurative osteomyelitis of the jaws in juvenile Baltic grey seals (Halichoerus grypus grypus) from the late 19th century. PLoS One 2019; 14:e0215401. [PMID: 30978237 PMCID: PMC6461278 DOI: 10.1371/journal.pone.0215401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
The systematic analysis of museum collections can provide important insights into the dental and skeletal pathology of wild mammals. Here we present a previously unreported type of dental defect and related skull pathology in five juvenile Baltic grey seals that had been collected in the course of a seal culling program along the Danish coast in 1889 and 1890. All five skulls exhibited openings into the pulp cavities at the crown tips of all (four animals) or two (one animal) canines as well as several incisors and (in one animal) also some anterior premolars. The affected teeth showed wide pulp cavities and thin dentin. Pulp exposure had caused infection, inflammation, and finally necrosis of the pulp. As was evidenced by the extensive radiolucency around the roots of the affected teeth, the inflammation had extended from the pulp into the periapical space, leading to apical periodontitis with extensive bone resorption. Further spreading of the inflammation into the surrounding bone regions had then caused suppurative osteomyelitis of the jaws. The postcanine teeth of the pathological individuals typically had dentin of normal thickness and, except for one specimen, did not exhibit pulp exposure. The condition may have been caused by a late onset of secondary and tertiary dentin formation that led to pulp exposure in anterior teeth exposed to intense wear. Future investigations could address a possible genetic causation of the condition in the studied grey seals.
Collapse
Affiliation(s)
- Uwe Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
- * E-mail:
| | - Morten T. Olsen
- Natural History Museum of Denmark, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Patricia Kahle
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| | | | - Horst Kierdorf
- Department of Biology, University of Hildesheim, Hildesheim, Germany
| |
Collapse
|