1
|
Carrizo MC, Zenuto RR, Luna F, Cutrera AP. Ambient temperature leads to differential immune strategies in the subterranean rodent Ctenomys talarum. J Exp Biol 2025; 228:JEB249634. [PMID: 39882663 DOI: 10.1242/jeb.249634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/26/2025] [Indexed: 01/31/2025]
Abstract
Animal thermoregulation may have significant costs and compete directly or indirectly with other energetically demanding processes, such as immune function. Although the subterranean environment is characterized by thermally stable conditions, small changes in ambient temperature could be critical in shaping immunity. However, little is known about the effects of ambient temperature, in naturally varying ranges, on immunity of wild species. Therefore, to evaluate the effect of short-term exposure to ambient temperatures on energy metabolism and body temperature during the acute phase immune response (APR) in the subterranean rodent Ctenomys talarum, 70 adult animals were divided into three experimental groups and exposed twice for 1 h to 15, 25 or 32°C (below, at or near the upper limit of the thermoneutral zone, respectively) before and after injection with saline (control) or lipopolysaccharide (LPS, which induces the APR). Animals exposed to 25 and 32°C showed a similar APR pattern, characterized by fever (average: 37.1 and 37.7°C, respectively), a 16% increase in O2 consumption and an increase in the neutrophil/lymphocyte ratio (N/L). Body mass loss and symptoms of sickness behavior were detected from 3 and 1 h post-injection, respectively. Individuals exposed to 15°C increased their metabolic rate by 60%, showed frequent hypothermia (34.3°C on average) and the characteristic N/L increase was attenuated. Body mass loss and sickness behavior were mostly detected 24 h post-injection. Our results suggest that the thermoregulation costs in C. talarum may limit the energy available for immunity, leading to different strategies to cope with infection.
Collapse
Affiliation(s)
- María Celina Carrizo
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Roxana Rita Zenuto
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Facundo Luna
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| | - Ana Paula Cutrera
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, B7602AYL Mar del Plata, Provincia de Buenos Aires, Argentina
| |
Collapse
|
2
|
Stockmaier S. Bat behavioral immune responses in social contexts: current knowledge and future directions. Front Immunol 2023; 14:1232556. [PMID: 37662931 PMCID: PMC10469833 DOI: 10.3389/fimmu.2023.1232556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Animals often mount complex immune responses to infections. Aside from cellular and molecular defense mechanisms, animals can alter their behavior in response to infection by avoiding, resisting, or tolerating negative effects of pathogens. These behaviors are often connected to cellular and molecular immune responses. For instance, sickness behaviors are a set of behavioral changes triggered by the host inflammatory response (e.g., cytokines) and could aid in resisting or tolerating infection, as well as affect transmission dynamics if sick animals socially withdraw or are being avoided by others. To fully understand the group and population level transmission dynamics and consequences of pathogen infections in bats, it is not only important to consider cellular and molecular defense mechanisms, but also behavioral mechanisms, and how both interact. Although there has been increasing interest in bat immune responses due to their ability to successfully cope with viral infections, few studies have explored behavioral anti-pathogen defense mechanisms. My main objective is to explore the interaction of cellular and molecular defense mechanisms, and behavioral alterations that results from infection in bats, and to outline current knowledge and future research avenues in this field.
Collapse
Affiliation(s)
- Sebastian Stockmaier
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Knoxville, TN, United States
- Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
3
|
Carrizo MC, Zenuto RR, Luna F, Cutrera AP. Varying intensity of simulated infection partially affects the magnitude of the acute-phase immune response in the subterranean rodent Ctenomys talarum. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:253-268. [PMID: 36479923 DOI: 10.1002/jez.2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
The acute phase response (APR), coordinated by a complex network of components of the immune and neuroendocrine systems, plays a key role in early immune defense. This response can be elicited by a wide variety of pathogens at different intensities (frequencies and doses), hence experimental immune challenges with antigen gradients makes it possible to evaluate sickness progression with a better representation of what occurs in natural systems. However, how infection intensity could shape the APR magnitude in wild species is still poorly understood. Here, the immune response was activated in the subterranean rodent Ctenomys talarum with a gradient of lipopolysaccharide (LPS) doses (0.5, 1, 1.5, and 2 mg/kg of body mass). Changes in body temperature, body mass, and energetic costs were evaluated over time. We also assessed cortisol levels, white blood cells counts and neutrophil: lymphocyte ratios, before and after injection. Results indicated that during the APR, C. talarum shows a hyperthermic response, which is maintained for 6 h, with slight differences among antigen doses in the pattern of thermal response and body mass change. A maximum increase in body temperature of 0.83°C to 1.63°C was observed during the first hour, associated with a metabolic cost that ranged from 1.25 to 1.41 ml O2 /gh. Although no clear effects of treatment were detected on leukocyte abundance, we found increments in neutrophil: lymphocyte ratios and gradual increases in cortisol levels corresponding to the intensity of simulated infection, which may indicate redistribution of immune cells and enhancement of immune function. An evident sickness syndrome was observed even at the lowest LPS dose that was characterized by an increase in body temperature, energy expenditure, and N: L ratio, as well as a dose-dependent increase in cortisol levels. Although in nature, other constraints and challenges could affect the magnitude and costs of immune responses, C. talarum mounts an effective APR with a low increase in their daily energy expenditure, regardless of LPS dose.
Collapse
Affiliation(s)
- María C Carrizo
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Roxana R Zenuto
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Facundo Luna
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Ana P Cutrera
- Grupo de Ecología Fisiológica y del Comportamiento, Instituto de Investigaciones Marinas y Costeras (IIMyC), CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
4
|
Viola MF, Gerardo Herrera M L, da Cruz-Neto AP. The acute phase response in bats (Carollia perspicillata) varies with time and dose of the immune challenge. J Exp Biol 2022; 225:286160. [PMID: 36448935 DOI: 10.1242/jeb.244583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 11/24/2022] [Indexed: 12/05/2022]
Abstract
The acute phase response (APR) is a core component of the innate immune response and represents the first line of immune defense used in response to infections. Although several studies with vertebrates reported fever, a decrease in food intake and body mass, and an increase in neutrophil/lymphocyte ratio and total white blood cell count after lipopolysaccharide (LPS) inoculation, there was great variability in the magnitude of these responses. Some of these differences might reflect, to some extent, differences in the time of endotoxin inoculation (during active or rest periods) and dose. Therefore, our study tested the interplay between LPS dose and time of injection on selected physiological (fever and increase in total white blood cell count and neutrophil/lymphocyte ratio) and behavioral (food intake) components of the APR using a Neotropical fruit-eating bat (Carollia perspicillata) as a model organism. We predicted that LPS would trigger a dose- and time-dependent response in APR components. APR components were assessed in rest and active periods after injection of three doses of LPS (5, 10 and 15 mg kg-1 LPS). The results indicate a more robust decrease in food intake at higher doses during the active period, while increased neutrophil/lymphocyte ratio was more robust during the active period regardless of dose. Furthermore, the skin temperature increase lasted longer at higher doses regardless of the timing of injections. Our study offers important insights into the dependence of time as well as the LPS dosage effect in the APR of bats, and how they deal with the magnitude of infections at different times of day.
Collapse
Affiliation(s)
- Matheus F Viola
- Laboratório de Fisiologia Animal (LaFA), Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, 13506-900 Rio Claro, São Paulo, Brazil
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional, Autónoma de México, 48980 San Patricio, Jalisco, México
| | - Ariovaldo P da Cruz-Neto
- Laboratório de Fisiologia Animal (LaFA), Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, 13506-900 Rio Claro, São Paulo, Brazil
| |
Collapse
|
5
|
Differences in acute phase response to bacterial, fungal and viral antigens in greater mouse-eared bats (Myotis myotis). Sci Rep 2022; 12:15259. [PMID: 36088405 PMCID: PMC9464231 DOI: 10.1038/s41598-022-18240-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 08/08/2022] [Indexed: 11/15/2022] Open
Abstract
The acute phase response (APR) is an evolutionarily well-conserved part of the innate immune defense against pathogens. However, recent studies in bats yielded surprisingly diverse results compared to previous APR studies on both vertebrate and invertebrate species. This is especially interesting due to the known role of bats as reservoirs for viruses and other intracellular pathogens, while being susceptible to extracellular microorganisms such as some bacteria and fungi. To better understand these discrepancies and the reservoir-competence of bats, we mimicked bacterial, viral and fungal infections in greater mouse-eared bats (Myotis myotis) and quantified different aspects of the APR over a two-day period. Individuals reacted most strongly to a viral (PolyI:C) and a bacterial (LPS) antigen, reflected by an increase of haptoglobin levels (LPS) and an increase of the neutrophil-to-lymphocyte-ratio (PolyI:C and LPS). We did not detect fever, leukocytosis, body mass loss, or a change in the overall functioning of the innate immunity upon challenge with any antigen. We add evidence that bats respond selectively with APR to specific pathogens and that the activation of different parts of the immune system is species-specific.
Collapse
|
6
|
Moreno KR, Weinberg M, Harten L, Salinas Ramos VB, Herrera M LG, Czirják GÁ, Yovel Y. Sick bats stay home alone: fruit bats practice social distancing when faced with an immunological challenge. Ann N Y Acad Sci 2021; 1505:178-190. [PMID: 33876431 PMCID: PMC9290741 DOI: 10.1111/nyas.14600] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/10/2021] [Accepted: 03/18/2021] [Indexed: 12/21/2022]
Abstract
Along with its many advantages, social roosting imposes a major risk of pathogen transmission. How social animals reduce this risk is poorly documented. We used lipopolysaccharide challenge to imitate bacterial infection in both a captive and a free‐living colony of an extremely social, long‐lived mammal—the Egyptian fruit bat. We monitored behavioral and physiological responses using an arsenal of methods, including onboard GPS to track foraging, acceleration sensors to monitor movement, infrared video to record social behavior, and blood samples to measure immune markers. Sick‐like (immune‐challenged) bats exhibited an increased immune response, as well as classic illness symptoms, including fever, weight loss, anorexia, and lethargy. Notably, the bats also exhibited behaviors that would reduce pathogen transfer. They perched alone and appeared to voluntarily isolate themselves from the group by leaving the social cluster, which is extremely atypical for this species. The sick‐like individuals in the open colony ceased foraging outdoors for at least two nights, thus reducing transmission to neighboring colonies. Together, these sickness behaviors demonstrate a strong, integrative immune response that promotes recovery of infected individuals while reducing pathogen transmission inside and outside the roost, including spillover events to other species, such as humans.
Collapse
Affiliation(s)
- Kelsey R Moreno
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Maya Weinberg
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Lee Harten
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Valeria B Salinas Ramos
- Department of Agriculture, University of Naples Federico II, Naples, Italy.,Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico, Mexico
| | - Gábor Á Czirják
- Department of Wildlife Diseases, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany
| | - Yossi Yovel
- Department of Zoology, Tel Aviv University, Tel Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
7
|
Acevedo A, Pabón F. Differences in body mass among the frugivorous bats Artibeus lituratus and Carollia perspicillata (Chiroptera: Phyllostomidae) from an urban and a peri-urban area of Cúcuta, Colombia. MAMMALOGY NOTES 2020. [DOI: 10.47603/mano.v6n2.163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We report differences in body mass of two species of fruit bats, Artibeus lituratus and Carollia perspicillata, from two fragments of tropical dry forest (TDF) located in urban and peri-urban areas of the city of Cúcuta, Colombia. From January to September 2018 bat sampling was carried out using mist nets to captured and weigh individuals in the field. The analysis was based only on adults who were not in a reproductive state. We found that both males and females of each species had a higher body mass in the peri-urban area than in the urban area. This highlights the importance of testing subsequent hypotheses to explain the body mass variations reported in this note in response to effects related to diet, diseases, and changes in land use, among others.
Collapse
|
8
|
Melhado G, Herrera M LG, da Cruz-Neto AP. Bats respond to simulated bacterial infection during the active phase by reducing food intake. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2020; 333:536-542. [PMID: 32691525 DOI: 10.1002/jez.2399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/27/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022]
Abstract
Sickness triggers a series of behavioral and physiological processes collectively known as acute phase response (APR). Bats are known as reservoirs of a broad variety of pathogens and the physiological changes resulting from APR activation have been tested predominantly during the resting phase (daytime) in several species exposed to lipopolysaccharide (LPS). In contrast, behavioral consequences of sickness for bats and other wild mammals have received less attention. We examined the physiological and behavioral consequences of APR activation in a fruit-eating bat (Carollia perspicillata) challenged with LPS during the active phase (nighttime). We measured changes in food intake, body mass, body temperature, total white blood cell counts, and the neutrophil/lymphocyte ratio (N/L). No fever and leukocytosis were observed in bats injected with LPS, but food intake decreased, bats lost body mass and their N/L ratio increased. The effect of LPS on daily energy balance is remarkable and, along with the increase in N/L ratio, it is assumed to be beneficial to fight disease. On the basis of our findings and those with other bats, it is probable that the physiological and behavioral components of the immune response to LPS follow circadian rhythms, but a formal test of this hypothesis is warranted.
Collapse
Affiliation(s)
- Gabriel Melhado
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional, Autónoma de México, San Patricio, Jalisco, México
| | - Ariovaldo P da Cruz-Neto
- Departamento de Biodiversidade, Instituto de Biociências, Universidade Estadual Paulista Júlio de Mesquita Filho, Rio Claro, São Paulo, Brazil
| |
Collapse
|
9
|
Stockmaier S, Bolnick DI, Page RA, Josic D, Carter GG. Immune-challenged vampire bats produce fewer contact calls. Biol Lett 2020; 16:20200272. [PMID: 32673543 DOI: 10.1098/rsbl.2020.0272] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Vocalizations are an important means to facilitate social interactions, but vocal communication may be affected by infections. While such effects have been shown for mate-attraction calls, other vocalizations that facilitate social contact have received less attention. When isolated, vampire bats produce contact calls that attract highly associated groupmates. Here, we test the effect of an immune challenge on contact calling rates of individually isolated vampire bats. Sickness behaviour did not appear to change call structure, but it decreased the number of contact calls produced. This effect could decrease contact with groupmates and augment other established mechanisms by which sickness reduces social encounters (e.g. mortality, lethargy and social withdrawal or disinterest).
Collapse
Affiliation(s)
- Sebastian Stockmaier
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.,Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama
| | - Daniel I Bolnick
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.,Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043, USA
| | - Rachel A Page
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama
| | - Darija Josic
- Museum fuer Naturkunde, Leibniz-Institute for Research on Evolution and Biodiversity, 10115 Berlin, Germany
| | - Gerald G Carter
- Smithsonian Tropical Research Institute, Apartado Postal 0843-03092, Balboa, Ancon, Panama.,Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
The acute phase response elicited by a viral-like molecular pattern increases energy expenditure in Artibeus lituratus. Biologia (Bratisl) 2019. [DOI: 10.2478/s11756-019-00204-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Becker DJ, Czirják GÁ, Rynda-Apple A, Plowright RK. Handling Stress and Sample Storage Are Associated with Weaker Complement-Mediated Bactericidal Ability in Birds but Not Bats. Physiol Biochem Zool 2019; 92:37-48. [PMID: 30481115 DOI: 10.1086/701069] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Variation in immune defense influences infectious disease dynamics within and among species. Understanding how variation in immunity drives pathogen transmission among species is especially important for animals that are reservoir hosts for zoonotic pathogens. Bats, in particular, have a propensity to host serious viral zoonoses without developing clinical disease themselves. The immunological adaptations that allow bats to host viruses without disease may be related to their adaptations for flight (e.g., in metabolism and mediation of oxidative stress). A number of analyses report greater richness of zoonotic pathogens in bats than in other taxa, such as birds (i.e., mostly volant vertebrates) and rodents (i.e., nonvolant small mammals), but immunological comparisons between bats and these other taxa are rare. To examine interspecific differences in bacterial killing ability (BKA), a functional measure of overall constitutive innate immunity, we use a phylogenetic meta-analysis to compare how BKA responds to the acute stress of capture and to storage time of frozen samples across the orders Aves and Chiroptera. After adjusting for host phylogeny, sample size, and total microbe colony-forming units, we find preliminary evidence that the constitutive innate immune defense of bats may be more resilient to handling stress and storage time than that of birds. This pattern was also similar when we analyzed the proportion of nonnegative and positive effect sizes per species, using phylogenetic comparative methods. We discuss potential physiological and evolutionary mechanisms by which complement proteins may differ between species orders and suggest future avenues for comparative field studies of immunity between sympatric bats, birds, and rodents in particular.
Collapse
|
12
|
Cabrera-Martinez LV, Herrera M LG, Cruz-Neto AP. Food restriction, but not seasonality, modulates the acute phase response of a Neotropical bat. Comp Biochem Physiol A Mol Integr Physiol 2018; 229:93-100. [PMID: 30553882 DOI: 10.1016/j.cbpa.2018.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 12/28/2022]
Abstract
Season and food intake are known to affect immune response of vertebrates yet their effects on metabolic rate have been rarely explored. We tested the effect of season and acute food restriction and their interaction on the energetic cost of immune response activation of a tropical vertebrate, the Seba's short-tailed fruit bat (Carollia perspicillata). We specifically stimulated the acute phase response (APR) with bacterial lipopolysaccharide (LPS) to measure metabolic changes along with changes in body temperature (Tb), body mass (Mb), white blood cell counts and the Neutrophil/Lymphocyte ratio (N/L). We found no effect of season on the different factors associated to the activation of the APR. In contrast to our expectations, unfed bats reached similar Tb increments and RMR peak values and had higher RMR scope values and higher caloric costs than fed bats after LPS injection. However, food deprivation led to delayed metabolic response indicated by longer time required to reach peak RMR values in unfed bats. Both food-deprived and fed bats did not present leukocytosis after APR activation and their WBC counts were similar, but unfed bats had a significant increase of N/L. APR activation represented a small fraction of the bat daily energy requirements which might explain why unfed bats were not limited to mount a metabolic response. Our study adds to recent evidence showing that activating the innate immune system is not an energetically expensive process for plant-eating bats.
Collapse
Affiliation(s)
- Lucía V Cabrera-Martinez
- Pós-graduação no programa de Zoologia, Instituto de Biociências, Universidade Estadual Paulista Julho de Mesquita Filho, Rio Claro, São Paulo, Brazil
| | - L Gerardo Herrera M
- Estación de Biología Chamela, Instituto de Biología, Universidad Nacional Autónoma de México, Apartado Postal 21, San Patricio, Jalisco 48980, Mexico.
| | - Ariovaldo P Cruz-Neto
- Departamento de Zoologia, Instituto de Biociências Universidade Estadual Paulista Julho de Mesquita Filho, Rio Claro, São Paulo, Brazil
| |
Collapse
|