1
|
Starr A, Nickoloff-Bybel E, Abedalthaqafi R, Albloushi N, Jordan-Sciutto KL. Human iPSC-derived neurons reveal NMDAR-independent dysfunction following HIV-associated insults. Front Mol Neurosci 2024; 16:1353562. [PMID: 38348237 PMCID: PMC10859444 DOI: 10.3389/fnmol.2023.1353562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 12/30/2023] [Indexed: 02/15/2024] Open
Abstract
The central nervous system encounters a number of challenges following HIV infection, leading to increased risk for a collection of neurocognitive symptoms clinically classified as HIV-associated neurocognitive disorders (HAND). Studies attempting to identify causal mechanisms and potential therapeutic interventions have historically relied on primary rodent neurons, but a number of recent reports take advantage of iPSC-derived neurons in order to study these mechanisms in a readily reproducible, human model. We found that iPSC-derived neurons differentiated via an inducible neurogenin-2 transcription factor were resistant to gross toxicity from a number of HIV-associated insults previously reported to be toxic in rodent models, including HIV-infected myeloid cell supernatants and the integrase inhibitor antiretroviral drug, elvitegravir. Further examination of these cultures revealed robust resistance to NMDA receptor-mediated toxicity. We then performed a comparative analysis of iPSC neurons exposed to integrase inhibitors and activated microglial supernatants to study sub-cytotoxic alterations in micro electrode array (MEA)-measured neuronal activity and gene expression, identifying extracellular matrix interaction/morphogenesis as the most consistently altered pathways across HIV-associated insults. These findings illustrate that HIV-associated insults dysregulate human neuronal activity and organization even in the absence of gross NMDA-mediated neurotoxicity, which has important implications on the effects of these insults in neurodevelopment and on the interpretation of primary vs. iPSC in vitro neuronal studies.
Collapse
Affiliation(s)
| | | | | | | | - Kelly L. Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
2
|
Levine AJ, Thadani C, Soontornniyomkij V, Lopez-Aranda MF, Mesa YG, Kitchen S, Rezek V, Silva A, Kolson DL. Behavioral and histological assessment of a novel treatment of neuroHIV in humanized mice. RESEARCH SQUARE 2023:rs.3.rs-3678629. [PMID: 38168407 PMCID: PMC10760308 DOI: 10.21203/rs.3.rs-3678629/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neurocognitive deficits are prevalent among people living with HIV, likely due to chronic inflammation and oxidative stress in the brain. To date, no pharmaceutical treatments beyond antiretroviral therapy (ARV) has been shown to reduce risk for, or severity of, HIV-associated neurocognitive disorder. Here we investigate a novel compound, CDDO-Me, with documented neuroprotective effects via activation of the nrf2 and inhibition of the NFkB pathways. Methods We conducted three studies to assess the efficacy of CDDO-Me alone or in combination with antiretroviral therapy in humanized mice infected with HIV; behavioral, histopathological, and immunohistochemical. Results CDDO-Me in combination with ARV rescued social interaction deficits; however, only ARV was associated with preserved functioning in other behaviors, and CDDO-Me may have attenuated those benefits. A modest neuroprotective effect was found for CDDO-Me when administered with ARV, via preservation of PSD-95 expression; however, ARV alone had a more consistent protective effect. No significant changes in antioxidant enzyme expression levels were observed in CDDO-Me-treated animals. Only ARV use seemed to affect some antioxidant levels, indicating that it is ARV rather than CDDO-Me that is the major factor providing neuroprotection in this animal model. Finally, immunohistochemical analysis found that several cellular markers in various brain regions varied due to ARV rather than CDDO-Me. Conclusion Limited benefit of CDDO-Me on behavior and neuroprotection were observed. Instead, ARV was shown to be the more beneficial treatment. These experiments support the future use of this chimeric mouse for behavioral experiments in neuroHIV research.
Collapse
Affiliation(s)
| | | | | | | | | | - Scott Kitchen
- UCLA Humanized Mouse Core Laboratory, University of California
| | - Valerie Rezek
- UCLA Humanized Mouse Core Laboratory, University of California
| | | | | |
Collapse
|
3
|
Lopez Lloreda C, Chowdhury S, Ghura S, Alvarez-Periel E, Jordan-Sciutto K. HIV-Associated Insults Modulate ADAM10 and Its Regulator Sirtuin1 in an NMDA Receptor-Dependent Manner. Cells 2022; 11:cells11192962. [PMID: 36230925 PMCID: PMC9564041 DOI: 10.3390/cells11192962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 12/02/2022] Open
Abstract
Neurologic deficits associated with human immunodeficiency virus (HIV) infection impact about 50% of persons with HIV (PWH). These disorders, termed HIV-associated neurocognitive disorders (HAND), possess neuropathologic similarities to Alzheimer’s disease (AD), including intra- and extracellular amyloid-beta (Aβ) peptide aggregates. Aβ peptide is produced through cleavage of the amyloid precursor protein (APP) by the beta secretase BACE1. However, this is precluded by cleavage of APP by the non-amyloidogenic alpha secretase, ADAM10. Previous studies have found that BACE1 expression was increased in the CNS of PWH with HAND as well as animal models of HAND. Further, BACE1 contributed to neurotoxicity. Yet in in vitro models, the role of ADAM10 and its potential regulatory mechanisms had not been examined. To address this, primary rat cortical neurons were treated with supernatants from HIV-infected human macrophages (HIV/MDMs). We found that HIV/MDMs decreased levels of both ADAM10 and Sirtuin1 (SIRT1), a regulator of ADAM10 that is implicated in aging and in AD. Both decreases were blocked with NMDA receptor antagonists, and treatment with NMDA was sufficient to induce reduction in ADAM10 and SIRT1 protein levels. Furthermore, decreases in SIRT1 protein levels were observed at an earlier time point than the decreases in ADAM10 protein levels, and the reduction in SIRT1 was reversed by proteasome inhibitor MG132. This study indicates that HIV-associated insults, particularly excitotoxicity, contribute to changes of APP secretases by downregulating levels of ADAM10 and its regulator.
Collapse
Affiliation(s)
- Claudia Lopez Lloreda
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah Chowdhury
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shivesh Ghura
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Alvarez-Periel
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly Jordan-Sciutto
- Department of Oral Medicine, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Correspondence:
| |
Collapse
|
4
|
Monick AJ, Joyce MR, Chugh N, Creighton JA, Morgan OP, Strain EC, Marvel CL. Characterization of basal ganglia volume changes in the context of HIV and polysubstance use. Sci Rep 2022; 12:4357. [PMID: 35288604 PMCID: PMC8921181 DOI: 10.1038/s41598-022-08364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
HIV and psychoactive substances can impact the integrity of the basal ganglia (BG), a neural substrate of cognition, motor control, and reward-seeking behaviors. This study assessed BG gray matter (GM) volume as a function of polysubstance (stimulant and opioid) use and HIV status. We hypothesized that comorbid polysubstance use and HIV seropositivity would alter BG GM volume differently than would polysubstance use or HIV status alone. We collected structural MRI scans, substance use history, and HIV diagnoses. Participants who had HIV (HIV +), a history of polysubstance dependence (POLY +), both, or neither completed assessments for cognition, motor function, and risk-taking behaviors (N = 93). All three clinical groups showed a left-lateralized pattern of GM reduction in the BG relative to controls. However, in the HIV + /POLY + group, stimulant use was associated with increased GM volume within the globus pallidus and putamen. This surpassed the effects from opioid use, as indicated by decreased GM volume throughout the BG in the HIV-/POLY + group. Motor learning was impaired in all three clinical groups, and in the HIV + /POLY + group, motor learning was associated with increased caudate and putamen GM volume. We also observed associations between BG GM volume and risk-taking behaviors in the HIV + /POLY- and HIV-/POLY + groups. The effects of substance use on the BG differed as a function of substance type used, HIV seropositivity, and BG subregion. Although BG volume decreased in association with HIV and opioid use, stimulants can, inversely, lead to BG volume increases within the context of HIV.
Collapse
Affiliation(s)
- Andrew J Monick
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michelle R Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Natasha Chugh
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Jason A Creighton
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Eric C Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Irollo E, Luchetta J, Ho C, Nash B, Meucci O. Mechanisms of neuronal dysfunction in HIV-associated neurocognitive disorders. Cell Mol Life Sci 2021; 78:4283-4303. [PMID: 33585975 PMCID: PMC8164580 DOI: 10.1007/s00018-021-03785-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/14/2021] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
HIV-associated neurocognitive disorder (HAND) is characterized by cognitive and behavioral deficits in people living with HIV. HAND is still common in patients that take antiretroviral therapies, although they tend to present with less severe symptoms. The continued prevalence of HAND in treated patients is a major therapeutic challenge, as even minor cognitive impairment decreases patient’s quality of life. Therefore, modern HAND research aims to broaden our understanding of the mechanisms that drive cognitive impairment in people with HIV and identify promising molecular pathways and targets that could be exploited therapeutically. Recent studies suggest that HAND in treated patients is at least partially induced by subtle synaptodendritic damage and disruption of neuronal networks in brain areas that mediate learning, memory, and executive functions. Although the causes of subtle neuronal dysfunction are varied, reversing synaptodendritic damage in animal models restores cognitive function and thus highlights a promising therapeutic approach. In this review, we examine evidence of synaptodendritic damage and disrupted neuronal connectivity in HAND from clinical neuroimaging and neuropathology studies and discuss studies in HAND models that define structural and functional impairment of neurotransmission. Then, we report molecular pathways, mechanisms, and comorbidities involved in this neuronal dysfunction, discuss new approaches to reverse neuronal damage, and highlight current gaps in knowledge. Continued research on the manifestation and mechanisms of synaptic injury and network dysfunction in HAND patients and experimental models will be critical if we are to develop safe and effective therapies that reverse subtle neuropathology and cognitive impairment.
Collapse
Affiliation(s)
- Elena Irollo
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Jared Luchetta
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Chunta Ho
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Department of Microbiology and Immunology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA. .,Center for Neuroimmunology and CNS Therapeutics, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|