1
|
Naik TJ, Salgaonkar BB. Unlocking the potential of microbes: Concomitant production of polyhydroxyalkanoates and carotenoids. Int J Biol Macromol 2025; 303:140654. [PMID: 39909243 DOI: 10.1016/j.ijbiomac.2025.140654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/21/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
The escalating environmental concerns and depletion of crude oil resources have catalyzed interest in biologically derived polymers, particularly biodegradable ones such as polyhydroxyalkanoates. However, the high production costs associated with polyhydroxyalkanoates, driven by raw material expenses, stringent production conditions and low yields, hinder their widespread adoption. A potential strategy to mitigate these costs involves the production of PHAs and other high-value bioproducts, such as carotenoids simultaneously in microbial systems, utilizing shared metabolic pathways. Carotenoids, known for their antioxidant properties and applications in the food, cosmetics and pharmaceutical industries, offer substantial market potential. This review presents a comprehensive overview of the current progress in polyhydroxyalkanoate and carotenoid co-production, explores the co-synthesis pathways, addresses the challenges involved and explores the future prospects of this integrated bioprocess. By diversifying the product portfolio and optimizing microbial production systems, the co-production strategy could pave the way for more sustainable and economically viable bioplastics.
Collapse
Affiliation(s)
- Tejas Jagannath Naik
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| | - Bhakti Balkrishna Salgaonkar
- Microbiology Programme, School of Biological Sciences and Biotechnology (SBSB), Goa University, Taleigao Plateau, Goa 403 206, India.
| |
Collapse
|
2
|
Ramachandran H, Anis SNS, Ansari NF, Sevakumaran V, Arifshah N, Rufadzil NAMK, Annuar MSM, Al-Ashraf Abdullah A. Superlative short chain length and medium chain length polyhydroxyalkanoates microbial producers isolated from Malaysian environment. Arch Microbiol 2025; 207:72. [PMID: 40014079 DOI: 10.1007/s00203-025-04256-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
Plastic waste pollution is escalating globally at an unprecedented pace, with a significant measure of this waste remaining unrecycled. Hence, polyhydroxyalkanoates (PHAs), a biogenic polyester, as a potential alternative to synthetic plastics has been intensively studied over the years. PHAs are biodegradable and biocompatible polyester produced by various microorganisms through the bioprocessing of sustainable sources. Bacterial PHAs show potential as an eco-friendly, biodegradable, and biocompatible alternative to conventional plastics. Malaysian environment, anthropogenic and natural, harbors an enormous diversity of microorganisms as well as various bacteria that produce PHAs. Hence, the current submission highlights on four indigenous PHA producers, isolated from the local environments, namely Cupriavidus malaysiensis USMAA2-4, Cupriavidus malaysiensis USMAA10-20, Cupriavidus malaysiensis USMAHM13, and Pseudomonas putida BET001. The four strains have contributed significantly as a workhorse in advancing PHA research and innovation in Malaysia and globally. Their uniqueness and significance in the PHA investigation, which include biosynthesis, recovery strategies, metabolic pathways involved, characteristics and properties of extracted PHA, biodegradation, and its potential applications are discussed.
Collapse
Affiliation(s)
- Hema Ramachandran
- School of Biological Sciences, Faculty of Integrated Life Sciences, Quest International University Perak, 30250, Ipoh, Perak, Malaysia
| | - Siti Nor Syairah Anis
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia.
| | - Nor Faezah Ansari
- Research Unit for Bioinformatics and Computational Biology (RUBIC), Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia.
| | - Vigneswari Sevakumaran
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nurhanani Arifshah
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
| | - Nurul Afifah Mohd Kamal Rufadzil
- Institute of Climate Adaptation and Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | | | - Amirul Al-Ashraf Abdullah
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Gelugor, Penang, Malaysia
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900, Bayan Lepas, Penang, Malaysia
| |
Collapse
|
3
|
de Mello AFM, Vandenberghe LPDS, Machado CMB, Brehmer MS, de Oliveira PZ, Binod P, Sindhu R, Soccol CR. Polyhydroxyalkanoates production in biorefineries: A review on current status, challenges and opportunities. BIORESOURCE TECHNOLOGY 2024; 393:130078. [PMID: 37993072 DOI: 10.1016/j.biortech.2023.130078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The need for a sustainable and circular bioeconomy model is imperative due to petroleum non-renewability, scarcity and environmental impacts. Biorefineries systems explore biomass to its maximum, being an important pillar for the development of circular bioeconomy. Polyhydroxyalkanoates (PHAs) can take advantage of biorefineries, as they can be produced using renewable feedstocks, and are potential substitutes for petrochemical plastics. The present work aims to evaluate the current status of the industrial development of PHAs production in biorefineries and PHAs contributions to the bioeconomy, along with future development points. Advancements are noticed when PHA production is coupled in wastewater treatment systems, when residues are used as substrate, and also when analytical methodologies are applied to evaluate the production process, such as the Life Cycle and Techno-Economic Analysis. For the commercial success of PHAs, it is established the need for dedicated investment and policies, in addition to proper collaboration of different society actors.
Collapse
Affiliation(s)
- Ariane Fátima Murawski de Mello
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil.
| | - Clara Matte Borges Machado
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | - Mateus Seleme Brehmer
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| | | | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-980, Curitiba, Paraná, Brazil
| |
Collapse
|