1
|
Sánchez-España J, Falagán C, Meier J. Aluminum Biorecovery from Wastewaters. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 190:89-117. [PMID: 38877309 DOI: 10.1007/10_2024_256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Aluminum biorecovery is still at an early stage. However, a significant number of studies showing promising results already exist, although they have revealed problems that need to be solved so aluminum biorecovery can have a wider application and industrial upscaling. In this chapter, we revise the existing knowledge on the biorecovery of aluminum from different sources. We discuss the design, overall performance, advantages, technical problems, limitations, and possible future directions of the different biotechnological methods that have been reported so far. Aluminum biorecovery from different sources has been studied (i.e., solid wastes and primary sources of variable origin, wastewater with low concentrations of dissolved aluminum at pH-neutral or weakly acidic conditions, and acidic mine waters with high concentrations of dissolved aluminum and other metal(loid)s) and has shown that the process efficiency strongly depends on factors such as (1) the physicochemical properties of the source materials, (2) the physiological features of the used (micro)organisms, or (3) the biochemical process used. Bioleaching of aluminum from low-grade bauxite or red mud can much be achieved by a diverse range of organisms (e.g., fungi, bacteria) with different metabolic rates. Biorecovery of aluminum from wastewaters, e.g., domestic wastewater, acidic mine water, has also been accomplished by the use of microalgae, cyanobacteria (for domestic wastewater) or by sulfate-reducing bacteria (acidic mine water). In most of the cases, the drawback of the process is the requirement of controlled conditions which involves a continuous supply of oxygen or maintenance of anoxic conditions which make aluminum biorecovery challenging in terms of process design and economical value. Further studies should focus on studying these processes in comparison or in combination to existing economical processes to assess their feasibility.
Collapse
Affiliation(s)
- Javier Sánchez-España
- Planetary Geology and Atmospheres Research Group, Department of Planetology and Habitability, Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain.
| | - Carmen Falagán
- School of Biological Sciences, King Henry Building, University of Portsmouth, Portsmouth, UK
| | - Jutta Meier
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| |
Collapse
|
2
|
Qu Y, Li H, Shi B, Gu H, Yan G, Liu Z, Luo R. Bioleaching Performance of Titanium from Bauxite Residue Under a Continuous Mode Using Penicillium Tricolor. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:61-67. [PMID: 35412056 DOI: 10.1007/s00128-022-03518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/16/2022] [Indexed: 06/14/2023]
Abstract
The present study performed a continuous mode of bioleaching to investigate the leaching efficiency of Titanium (Ti) from bauxite residue using Penicillium Tricolor at between 4% and 12% pulp densities during a 120-day running. Obtained results of the current study showed that increased pulp density led to a decrease in biomass, dissolved oxygen, and amount of leaching Ti as well as an increase in pH value. Further, it was found that efficiency of bioleaching can be enhanced by increasing the rate of aeration, retention time, and concentration of carbon source. However, it was also evident that, at high pulp density, excessive agitation did not give an expected leaching efficiency but a collapse of biomass. In addition, results of the present study showed that the maximum leaching amount of Ti was 3202 mg/L with a corresponding leaching ratio of 50.35% during the whole bioleaching process. Moreover, it was noted that the biomass showed a significant negative correlation with the pH value and dissolved oxygen. However, the biomass showed a significant positive correlation with leaching amount of Ti and thus indicate that microbial metabolic activities are the uppermost factor affecting the continuous leaching performance.
Collapse
Affiliation(s)
- Yang Qu
- School of Environmental and Natural Science, Zhejiang University of Science & Technology, Hangzhou, 310023, China.
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China.
| | - Hui Li
- School of Environmental and Natural Science, Zhejiang University of Science & Technology, Hangzhou, 310023, China
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Ben Shi
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Hannian Gu
- Key Laboratory of High-Temperature and High-Pressure Study of the Earth's Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Guangxuan Yan
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang, 453007, China
| | - Zipeng Liu
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| | - Ruizhi Luo
- Department of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
3
|
Farkas B, Vojtková H, Bujdoš M, Kolenčík M, Šebesta M, Matulová M, Duborská E, Danko M, Kim H, Kučová K, Kisová Z, Matúš P, Urík M. Fungal Mobilization of Selenium in the Presence of Hausmannite and Ferric Oxyhydroxides. J Fungi (Basel) 2021; 7:jof7100810. [PMID: 34682232 PMCID: PMC8539610 DOI: 10.3390/jof7100810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/06/2023] Open
Abstract
Bioleaching of mineral phases plays a crucial role in the mobility and availability of various elements, including selenium. Therefore, the leachability of selenium associated with the surfaces of ferric and manganese oxides and oxyhydroxides, the prevailing components of natural geochemical barriers, has been studied in the presence of filamentous fungus. Both geoactive phases were exposed to selenate and subsequently to growing fungus Aspergillus niger for three weeks. This common soil fungus has shown exceptional ability to alter the distribution and mobility of selenium in the presence of both solid phases. The fungus initiated the extensive bioextraction of selenium from the surfaces of amorphous ferric oxyhydroxides, while the hausmannite (Mn3O4) was highly susceptible to biodeterioration in the presence of selenium. This resulted in specific outcomes regarding the selenium, iron, and manganese uptake by fungus and residual selenium concentrations in mineral phases as well. The adverse effects of bioleaching on fungal growth are also discussed.
Collapse
Affiliation(s)
- Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic; (H.V.); (K.K.)
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Marek Kolenčík
- Institute of Agronomic Sciences, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Martin Šebesta
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Michaela Matulová
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Martin Danko
- Polymer Institute, Slovak Academy of Sciences, Dúbravská Cesta 9, 845 41 Bratislava, Slovakia;
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea;
- Department of Environment and Energy, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea
| | - Kateřina Kučová
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB–Technical University of Ostrava, 17. Listopadu 15/2172, 708 00 Ostrava, Czech Republic; (H.V.); (K.K.)
| | - Zuzana Kisová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská Cesta 21, 845 51 Bratislava, Slovakia;
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 842 15 Bratislava, Slovakia; (B.F.); (M.B.); (M.Š.); (M.M.); (E.D.); (P.M.)
- Correspondence:
| |
Collapse
|
4
|
Bioleaching of Manganese Oxides at Different Oxidation States by Filamentous Fungus Aspergillus niger. J Fungi (Basel) 2021; 7:jof7100808. [PMID: 34682230 PMCID: PMC8540447 DOI: 10.3390/jof7100808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022] Open
Abstract
This work aimed to examine the bioleaching of manganese oxides at various oxidation states (MnO, MnO·Mn2O3, Mn2O3 and MnO2) by a strain of the filamentous fungus Aspergillus niger, a frequent soil representative. Our results showed that the fungus effectively disintegrated the crystal structure of selected mineral manganese phases. Thereby, during a 31-day static incubation of oxides in the presence of fungus, manganese was bioextracted into the culture medium and, in some cases, transformed into a new biogenic mineral. The latter resulted from the precipitation of extracted manganese with biogenic oxalate. The Mn(II,III)-oxide was the most susceptible to fungal biodeterioration, and up to 26% of the manganese content in oxide was extracted by the fungus into the medium. The detected variabilities in biogenic oxalate and gluconate accumulation in the medium are also discussed regarding the fungal sensitivity to manganese. These suggest an alternative pathway of manganese oxides’ biodeterioration via a reductive dissolution. There, the oxalate metabolites are consumed as the reductive agents. Our results highlight the significance of fungal activity in manganese mobilization and transformation. The soil fungi should be considered an important geoactive agent that affects the stability of natural geochemical barriers.
Collapse
|
5
|
Miglierini MB, Dekan J, Urík M, Cesnek M, Kmječ T, Matúš P. Fungal-induced modification of spontaneously precipitated ochreous sediments from drainage of abandoned antimony mine. CHEMOSPHERE 2021; 269:128733. [PMID: 33131728 DOI: 10.1016/j.chemosphere.2020.128733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Iron-containing spontaneously precipitated ochreous sediments serve as natural scavengers of various migrating elements and in this way contribute to removal and immobilization of potentially hazardous elements especially from mine drainage outflows. On the other hand, presence of filamentous fungi in their surroundings triggers biotransformation and contributes to the mobility of these elements. Three groups of samples of spontaneously precipitated ochreous sediments from an abandoned antimony mine in Poproč, Slovakia were studied: as-collected, sterilized at 95 °C for 30 min, and exposed to incubation with filamentous fungus Aspergillus niger which is frequently found in soils. Employing chemical analyses have determined the content of Fe, As, Sb, and Zn in the samples as well as their mobilization among the non-dissolved residue, culture medium of the fungus and/or its biomass. Significant degree of biovolatilization of antimony was unveiled. Speciation of iron was performed by 57Fe Mössbauer spectroscopy performed in a wide temperature range 300-4.2 K and external magnetic field of 6 T. Hyperfine interactions between 57Fe nuclei and their electronic shells have revealed superparamagnetic behavior characteristic for small particles. Their blocking temperatures of 46, 53, and 40 K, respectively, indicate a dependence of the size of the particles upon the sample treatment. While sterilization has supported their growth, incubation with fungus has changed their chemical environment and removed mainly bigger particles.
Collapse
Affiliation(s)
- Marcel B Miglierini
- Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19, Bratislava, Slovakia; Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holešovičkách 2, 180 00, Prague, Czech Republic.
| | - Július Dekan
- Slovak University of Technology in Bratislava, Faculty of Electrical Engineering and Information Technology, Institute of Nuclear and Physical Engineering, Ilkovičova 3, 812 19, Bratislava, Slovakia.
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| | - Martin Cesnek
- Department of Nuclear Reactors, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, V Holešovičkách 2, 180 00, Prague, Czech Republic.
| | - Tomáš Kmječ
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Prague, Czech Republic.
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15, Bratislava, Slovakia.
| |
Collapse
|
6
|
Farkas B, Kolenčík M, Hain M, Dobročka E, Kratošová G, Bujdoš M, Feng H, Deng Y, Yu Q, Illa R, Sunil BR, Kim H, Matúš P, Urík M. Aspergillus niger Decreases Bioavailability of Arsenic(V) via Biotransformation of Manganese Oxide into Biogenic Oxalate Minerals. J Fungi (Basel) 2020; 6:jof6040270. [PMID: 33182297 PMCID: PMC7711977 DOI: 10.3390/jof6040270] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/09/2023] Open
Abstract
The aim of this work was to evaluate the transformation of manganese oxide (hausmannite) by microscopic filamentous fungus Aspergillus niger and the effects of the transformation on mobility and bioavailability of arsenic. Our results showed that the A. niger strain CBS 140837 greatly affected the stability of hausmannite and induced its transformation into biogenic crystals of manganese oxalates—falottaite and lindbergite. The transformation was enabled by fungal acidolysis of hausmannite and subsequent release of manganese ions into the culture medium. While almost 45% of manganese was bioextracted, the arsenic content in manganese precipitates increased throughout the 25-day static cultivation of fungus. This significantly decreased the bioavailability of arsenic for the fungus. These results highlight the unique A. niger strain’s ability to act as an active geochemical factor via its ability to acidify its environment and to induce formation of biogenic minerals. This affects not only the manganese speciation, but also bioaccumulation of potentially toxic metals and metalloids associated with manganese oxides, including arsenic.
Collapse
Affiliation(s)
- Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (B.F.); (M.B.); (P.M.)
| | - Marek Kolenčík
- Department of Soil Science and Geology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, 949 76 Nitra, Slovakia;
- Nanotechnology Centre, VŠB—Technical University of Ostrava, 70833 Ostrava, Czech Republic;
| | - Miroslav Hain
- Institute of Measurement Science, Slovak Academy of Sciences in Bratislava, 84104 Bratislava, Slovakia;
| | - Edmund Dobročka
- Institute of Electrical Engineering, Slovak Academy of Sciences in Bratislava, 84104 Bratislava, Slovakia;
| | - Gabriela Kratošová
- Nanotechnology Centre, VŠB—Technical University of Ostrava, 70833 Ostrava, Czech Republic;
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (B.F.); (M.B.); (P.M.)
| | - Huan Feng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA; (H.F.); (Y.D.)
| | - Yang Deng
- Department of Earth and Environmental Studies, Montclair State University, Montclair, NJ 07043, USA; (H.F.); (Y.D.)
| | - Qian Yu
- School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China;
| | - Ramakanth Illa
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technologies, AP IIIT, Nuzvid 521202, India;
| | - B. Ratna Sunil
- Department of Mechanical Engineering, Bapatla Engineering College, Bapatla 522101, India;
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, Korea;
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (B.F.); (M.B.); (P.M.)
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia; (B.F.); (M.B.); (P.M.)
- Correspondence: ; Tel.: +421-290-149-392
| |
Collapse
|
7
|
Duborská E, Szabó K, Bujdoš M, Vojtková H, Littera P, Dobročka E, Kim H, Urík M. Assessment of Aspergillus niger Strain's Suitability for Arsenate-Contaminated Water Treatment and Adsorbent Recycling via Bioextraction in a Laboratory-Scale Experiment. Microorganisms 2020; 8:E1668. [PMID: 33121130 PMCID: PMC7693371 DOI: 10.3390/microorganisms8111668] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/17/2022] Open
Abstract
In this work, the viability of bioaccumulation and bioextraction processes for arsenic removal from contaminated waters, as well as the recycling of arsenate-treated amorphous ferric oxyhydroxide adsorbent (FeOOH) were evaluated using the common soil microscopic filamentous fungus Aspergillus niger. After treating the contaminated arsenate solution (100 mg As L-1) with FeOOH, the remaining solution was exposed to the growing fungus during a static 19-day cultivation period to further decrease the arsenic concentration. Our data indicated that although the FeOOH adsorbent is suitable for arsenate removal with up to 84% removal efficiency, the fungus was capable of accumulating only up to 13.2% of the remaining arsenic from the culture media. This shows that the fungus A. niger, although highly praised for its application in environmental biotechnology research, was insufficient for decreasing the arsenic contamination to an environmentally acceptable level. However, the bioextraction of arsenic from arsenate-treated FeOOH proved relatively effective for reuse of the adsorbent. Due to its production of acidic metabolites, which decreased pH below 2.7, the fungal strain was capable of removing of up to 98.2% of arsenic from the arsenate-treated FeOOH adsorbent.
Collapse
Affiliation(s)
- Eva Duborská
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| | - Kinga Szabó
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology (FMG), Technical University of Ostrava, 17. listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic;
| | - Pavol Littera
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| | - Edmund Dobročka
- Institute of Electrical Engineering, Slovak Academy of Sciences, Dúbravská cesta 9, 841 04 Bratislava, Slovakia;
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Jeonbuk National University, 567, Baekje-daero, Deokjin-gu, Jeonju, Jeonbuk 54896, Korea;
| | - Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia; (E.D.); (K.S.); (M.B.); (P.L.)
| |
Collapse
|
8
|
Differences in metabolites production using the Biolog FF Microplate™ system with an emphasis on some organic acids of Aspergillus niger wild type strains. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00521-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Comparison of two morphologically different fungal biomass types for experimental separation of labile aluminium species using atomic spectrometry methods. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00854-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
|
11
|
Urík M, Polák F, Bujdoš M, Miglierini MB, Milová-Žiaková B, Farkas B, Goneková Z, Vojtková H, Matúš P. Antimony leaching from antimony-bearing ferric oxyhydroxides by filamentous fungi and biotransformation of ferric substrate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:683-689. [PMID: 30763848 DOI: 10.1016/j.scitotenv.2019.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/02/2019] [Accepted: 02/02/2019] [Indexed: 06/09/2023]
Abstract
Ferric oxyhydroxides are natural scavengers of antimony, thus, they contribute significantly to antimony immobilization in soils and sediments. Recent studies, however, usually omit microbial influence on geochemically stable antimony-ferric oxyhydroxide association. Therefore, we have evaluated fungal contribution to antimony mobility during static cultivation of common soil fungus Aspergillus niger in presence of ferric oxyhydroxides. Our results indicate distinguished effect of fungus on antimony distribution at two different antimony concentrations that were used for antimony pre-adsorbtion onto ferric oxyhydroxides prior to the inoculation. Approximately 36% of antimony was bioextracted by fungus from antimony bearing ferric oxyhydroxide after 14-day cultivation when the 8.9 mg·L-1 antimony concentration was used for pre-adsorption. However, no statistically significant change of antimony content in ferric oxyhydroxides was observed after cultivation when initial 48 mg·L-1 antimony concentration was used for pre-adsorption. As Mössbauer spectroscopy and XRD analysis indicated, nanosized akageneite, goethite, and lepidocrocite enhanced their crystallinity during cultivation, while hematite was identified only after the cultivation. Nevertheless, presence of ferric oxyhydroxides at both initial concentrations enabled transformation of antimony into volatile derivatives, and almost 9.5% of antimony was biovolatilized after cultivation. These results contribute significantly to environmental geochemistry of antimony-ferric oxyhydroxides association and highlight the importance of microbial activity in relation to ferric component of natural geochemical barriers.
Collapse
Affiliation(s)
- Martin Urík
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia.
| | - Filip Polák
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Marek Bujdoš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Marcel B Miglierini
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Department of Nuclear Reactors, V Holešovičkách 2, 18000 Prague, Czech Republic
| | - Barbora Milová-Žiaková
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Bence Farkas
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Zuzana Goneková
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| | - Hana Vojtková
- Department of Environmental Engineering, Faculty of Mining and Geology, VŠB - Technical University of Ostrava, 17. listopadu 15/2172, 70833 Ostrava, Czech Republic
| | - Peter Matúš
- Institute of Laboratory Research on Geomaterials, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina, Ilkovičova 6, 84215 Bratislava, Slovakia
| |
Collapse
|