1
|
Salem MM, Mohamed TM, Shaban AM, Mahmoud YAG, Eid MA, El-Zawawy NA. Optimization, purification and characterization of laccase from a new endophytic Trichoderma harzianum AUMC14897 isolated from Opuntia ficus-indica and its applications in dye decolorization and wastewater treatment. Microb Cell Fact 2024; 23:266. [PMID: 39369235 PMCID: PMC11453076 DOI: 10.1186/s12934-024-02530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Hazardous synthetic dye wastes have become a growing threat to the environment and public health. Fungal enzymes are eco-friendly, compatible and cost-effective approach for diversity of applications. Therefore, this study aimed to screen, optimize fermentation conditions, and characterize laccase from fungal endophyte with elucidating its ability to decolorize several wastewater dyes. RESULTS A new fungal endophyte capable of laccase-producing was firstly isolated from cladodes of Opuntia ficus-indica and identified as T. harzianum AUMC14897 using ITS-rRNA sequencing analysis. Furthermore, the response surface methodology (RSM) was utilized to optimize several fermentation parameters that increase laccase production. The isolated laccase was purified to 13.79-fold. GFC, SDS-PAGE revealed laccase molecular weight at 72 kDa and zymogram analysis elucidated a single band without any isozymes. The peak activity of the pure laccase was detected at 50 °C, pH 4.5, with thermal stability up to 50 °C and half life span for 4 h even after 24 h retained 30% of its activity. The Km and Vmax values were 0.1 mM, 22.22 µmol/min and activation energy (Ea) equal to 5.71 kcal/mol. Furthermore, the purified laccase effectively decolorized various synthetic and real wastewater dyes. CONCLUSION Subsequently, the new endophytic strain produces high laccase activity that possesses a unique characteristic, it could be an appealing candidate for both environmental and industrial applications.
Collapse
Affiliation(s)
- Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya M Shaban
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohammed A Eid
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
El-Moslamy SH, Abd-Elhamid AI, Fawal GE. Large-scale production of myco-fabricated ZnO/MnO nanocomposite using endophytic Colonstachys rosea with its antimicrobial efficacy against human pathogens. Sci Rep 2024; 14:935. [PMID: 38195769 PMCID: PMC10776836 DOI: 10.1038/s41598-024-51398-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024] Open
Abstract
In this study, a ZnO/MnO nanocomposite was myco-fabricated using the isolated endophytic Clonostachys rosea strain EG99 as the nano-factory. The extract of strain EG99, a reducing/capping agent, was successfully titrated with equal quantities of Zn(NO3)2·6H2O and Mn(NO3)2·6H2O (precursors) in a single step to fabricate the rod-shaped ZnO/MnO nanocomposite of size 6.22 nm. The ZnO/MnO nanocomposite was myco-fabricated in 20 min, and the results were validated at 350 and 400 nm using UV-Vis spectroscopy. In a 7-L bioreactor, an industrial biotechnological approach was used to scale up the biomass of this strain, EG99, and the yield of the myco-fabricated ZnO/MnO nanocomposite. A controlled fed-batch fermentation system with a specific nitrogen/carbon ratio and an identical feeding schedule was used in this production process. Higher yields were obtained by adopting a controlled fed-batch fermentation approach in a 7-L bioreactor with a regular feeding schedule using a nitrogen/carbon ratio of 1:200. Overall, the fed-batch produced 89.2 g/l of biomass at its maximum, 2.44 times more than the batch's 36.51 g/l output. Furthermore, the fed-batch's maximum ZnO/MnO nanocomposite yield was 79.81 g/l, a noteworthy 14.5-fold increase over the batch's yield of 5.52 g/l. Finally, we designed an innovative approach to manage the growth of the endophytic strain EG99 using a controlled fed-batch fermentation mode, supporting the rapid, cheap and eco-friendly myco-fabrication of ZnO/MnO nanocomposite. At a dose of 210 µg/ml, the tested myco-fabricated ZnO/MnO nanocomposite exhibited the maximum antibacterial activity against Staphylococcus aureus (98.31 ± 0.8%), Escherichia coli (96.70 ± 3.29%), and Candida albicans (95.72 ± 0.95%). At the same dose, Staphylococcus aureus biofilm was eradicated in 48 h; however, Escherichia coli and Candida albicans biofilms needed 72 and 96 h, respectively. Our myco-fabricated ZnO/MnO nanocomposite showed strong and highly selective antagonistic effects against a variety of multidrug-resistant human pathogens. Therefore, in upcoming generations of antibiotics, it might be employed as a nano-antibiotic.
Collapse
Affiliation(s)
- Shahira H El-Moslamy
- Department of Bioprocess Development (BID), Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab City, Alexandria, 21934, Egypt.
| | - Ahmed Ibrahim Abd-Elhamid
- Composites and Nanostructured Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, 21934, Egypt
| | - Gomaa El Fawal
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El Arab, Alexandria, 21934, Egypt
| |
Collapse
|
3
|
Toppo P, Jangir P, Mehra N, Kapoor R, Mathur P. Bioprospecting of endophytic fungi from medicinal plant Anisomeles indica L. for their diverse role in agricultural and industrial sectors. Sci Rep 2024; 14:588. [PMID: 38182714 PMCID: PMC10770348 DOI: 10.1038/s41598-023-51057-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024] Open
Abstract
Endophytes are microorganisms that inhabit various plant parts and cause no damage to the host plants. During the last few years, a number of novel endophytic fungi have been isolated and identified from medicinal plants and were found to be utilized as bio-stimulants and bio fertilizers. In lieu of this, the present study aims to isolate and identify endophytic fungi associated with the leaves of Anisomeles indica L. an important medicinal plant of the Terai-Duars region of West Bengal. A total of ten endophytic fungi were isolated from the leaves of A. indica and five were identified using ITS1/ITS4 sequencing based on their ability for plant growth promotion, secondary metabolite production, and extracellular enzyme production. Endophytic fungal isolates were identified as Colletotrichum yulongense Ai1, Colletotrichum cobbittiense Ai2, Colletotrichum alienum Ai2.1, Colletotrichum cobbittiense Ai3, and Fusarium equiseti. Five isolates tested positive for their plant growth promotion potential, while isolates Ai4. Ai1, Ai2, and Ai2.1 showed significant production of secondary metabolites viz. alkaloids, phenolics, flavonoids, saponins, etc. Isolate Ai2 showed maximum total phenolic concentration (25.98 mg g-1), while isolate Ai4 showed maximum total flavonoid concentration (20.10 mg g-1). Significant results were observed for the production of extracellular enzymes such as cellulases, amylases, laccases, lipases, etc. The isolates significantly influenced the seed germination percentage of tomato seedlings and augmented their growth and development under in vitro assay. The present work comprehensively tested these isolates and ascertained their huge application for the commercial utilization of these isolates both in the agricultural and industrial sectors.
Collapse
Affiliation(s)
- Prabha Toppo
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, West Bengal, 734013, India
| | - Pooja Jangir
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Namita Mehra
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Rupam Kapoor
- Plant-Fungus Interactions Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Piyush Mathur
- Microbiology Laboratory, Department of Botany, University of North Bengal, Rajarammohunpur, Dist. Darjeeling, West Bengal, 734013, India.
| |
Collapse
|
4
|
Parashar M, Dhar SK, Kaur J, Chauhan A, Tamang J, Singh GB, Lyudmila A, Perveen K, Khan F, Bukhari NA, Mudgal G, Gururani MA. Two Novel Plant-Growth-Promoting Lelliottia amnigena Isolates from Euphorbia prostrata Aiton Enhance the Overall Productivity of Wheat and Tomato. PLANTS (BASEL, SWITZERLAND) 2023; 12:3081. [PMID: 37687328 PMCID: PMC10490547 DOI: 10.3390/plants12173081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/13/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023]
Abstract
Euphorbiaceae is a highly diverse family of plants ranging from trees to ground-dwelling minute plants. Many of these have multi-faceted attributes like ornamental, medicinal, industrial, and food-relevant values. In addition, they have been regarded as keystone resources for investigating plant-specific resilience mechanisms that grant them the dexterity to withstand harsh climates. In the present study, we isolated two co-culturable bacterial endophytes, EP1-AS and EP1-BM, from the stem internodal segments of the prostate spurge, Euphorbia prostrata, a plant member of the succulent family Euphorbiaceae. We characterized them using morphological, biochemical, and molecular techniques which revealed them as novel strains of Enterobacteriaceae, Lelliotia amnigena. Both the isolates significantly were qualified during the assaying of their plant growth promotion potentials. BM formed fast-growing swarms while AS showed growth as rounded colonies over nutrient agar. We validated the PGP effects of AS and BM isolates through in vitro and ex vitro seed-priming treatments with wheat and tomato, both of which resulted in significantly enhanced seed germination and morphometric and physiological plant growth profiles. In extended field trials, both AS and BM could remarkably also exhibit productive yields in wheat grain and tomato fruit harvests. This is probably the first-ever study in the context of PGPB endophytes in Euphorbia prostrata. We discuss our results in the context of promising agribiotechnology translations of the endophyte community associated with the otherwise neglected ground-dwelling spurges of Euphorbiaceae.
Collapse
Affiliation(s)
- Manisha Parashar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Sanjoy Kumar Dhar
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Jaspreet Kaur
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Arjun Chauhan
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Jeewan Tamang
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Gajendra Bahadur Singh
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Asyakina Lyudmila
- Laboratory for Phytoremediation of Technogenically Disturbed Ecosystems, Kemerovo State University, Krasnaya Street, 6, 65000 Kemerovo, Russia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Faheema Khan
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Najat A. Bukhari
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh 11495, Saudi Arabia (N.A.B.)
| | - Gaurav Mudgal
- University Institute of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (S.K.D.); (J.K.); (G.B.S.)
| | - Mayank Anand Gururani
- Department of Biology, College of Science, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| |
Collapse
|
5
|
Novel biosynthesis of MnO NPs using Mycoendophyte: industrial bioprocessing strategies and scaling-up production with its evaluation as anti-phytopathogenic agents. Sci Rep 2023; 13:2052. [PMID: 36739323 PMCID: PMC9899258 DOI: 10.1038/s41598-023-28749-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
This report provides the first description of the myco-synthesis of rod-shaped MnO NPs with an average crystallite size of ~ 35 nm, employing extracellular bioactive metabolites of endophytic Trichoderma virens strain EG92 as capping/reducing agents and MnCl2·4H2O as a parent component. The wheat bran medium was chosen to grow endophytic strain EG92, which produced a variety of bioactive metabolites in extracellular fraction, which increases the yield of MnO NPs to 9.53 g/l. The whole medium and fungal growth conditions that influenced biomass generation were optimized as successive statistical optimization approaches (Plackett-Burman and Box-Behnken designs). The production improvements were achieved at pH 5.5, WBE (35%), and inoculum size (10%), which increased Xmax to twelve-folds (89.63 g/l); thereby, Pmax increased to eight-folds (82.93 g/l). After 162 h, Xmax (145.63 g/l) and Pmax (99.52 g/l) on the side of µmax and YX/S were determined as 0.084 and 7.65, respectively. Via Taguchi experimental design, fungus-fabricated MnO NPs reaction was improved by adding 0.25 M of MnCl2·4H2O to 100% of fungal extract (reducing/capping agents) and adjusting the reaction pH adjusted to ~ 5. This reaction was incubated at 60 °C for 5 h before adding 20% fungal extract (stabilizing agent). Also, Pmax was raised 40-fold (395.36 g/l) over the BC. Our myco-synthesized MnO NPs exhibit faster and more precise antagonistic actions against phytopathogenic bacteria than fungi; they could be employed as an alternative and promised nano-bio-pesticide to manage a variety of different types of disease-pathogens in the future.
Collapse
|
6
|
Koshila Ravi R, Prema Sundara Valli P, Muthukumar T. Physiological characterization of root endophytic Fusarium haematococcum for hydrolytic enzyme production, nutrient solubilization and salinity tolerance. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
7
|
Raghav D, Jyoti A, Siddiqui AJ, Saxena J. Plant associated endophytic fungi as potential bio-factories for extracellular enzymes: Progress, Challenges and Strain improvement with precision approaches. J Appl Microbiol 2022; 133:287-310. [PMID: 35396804 DOI: 10.1111/jam.15574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/04/2022] [Accepted: 04/04/2022] [Indexed: 11/29/2022]
Abstract
There is an intricate network of relations between endophytic fungi and their hosts that affects the production of various bioactive compounds. Plant-associated endophytic contain industrially important enzymes and have the potential to fulfill their rapid demand in the international market to boost business in technology. Being safe and metabolically active, they have replaced the usage of toxic and harmful chemicals and hold a credible application in biotransformation, bioremediation, and industrial processes. Despite these, there are limited reports on fungal endophytes that can directly cater to the demand and supply of industrially stable enzymes. The underlying reasons include low endogenous production and secretion of enzymes from fungal endophytes which have raised concern for widely accepted applications. Hence it is imperative to augment the biosynthetic and secretory potential of fungal endophytes. Modern state-of-the-art biotechnological technologies aiming at strain improvement using cell factory engineering as well as precise gene editing like Clustered Regularly Interspaced Palindromic Repeats (CRISPR) and its Associated proteins (Cas) systems which can provide a boost in fungal endophyte enzyme production. Additionally, it is vital to characterize optimum conditions to grow one strain with multiple enzymes (OSME). The present review encompasses various plants-derived endophytic fungal enzymes and their applications in various sectors. Further, we postulate the feasibility of new precision approaches with an aim for strain improvement and enhanced enzyme production.
Collapse
Affiliation(s)
- Divyangi Raghav
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India
| | - Anupam Jyoti
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.,Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, SAS, Nagar, Punjab
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P O Box, Saudi Arabia
| | - Juhi Saxena
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.,Department of Biotechnology, University Institute of Biotechnology, Chandigarh University, SAS, Nagar, Punjab
| |
Collapse
|
8
|
Endophytic fungi: a potential source of industrial enzyme producers. 3 Biotech 2022; 12:86. [PMID: 35273898 PMCID: PMC8894535 DOI: 10.1007/s13205-022-03145-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/09/2022] [Indexed: 11/01/2022] Open
Abstract
Microbial enzymes have gained interest for their widespread use in various industries and medicine due to their stability, ease of production, and optimization. Endophytic fungi in plant tissues produce a wide range of secondary metabolites and enzymes, which exhibit a variety of biological activities. The present review illustrates promising applications of enzymes produced by endophytic fungi and discusses the characteristic features of the enzymes, application of the endophytic fungal enzymes in therapeutics, agriculture, food, and biofuel industries. Endophytic fungi producing ligninolytic enzymes have possible biotechnological applications in lignocellulosic biorefineries. The global market of industrially important enzymes, challenges, and future prospects are illustrated. However, the commercialization of endophytic fungal enzymes for industrial purposes is yet to be explored. The present review suggests that endophytic fungi can produce various enzymes and may become a novel source for upscaling the production of enzymes of industrial use.
Collapse
|
9
|
Isolation and Screening of Microorganisms for the Effective Pretreatment of Lignocellulosic Agricultural Wastes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5514745. [PMID: 34604384 PMCID: PMC8481070 DOI: 10.1155/2021/5514745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 08/21/2021] [Accepted: 09/02/2021] [Indexed: 11/17/2022]
Abstract
Lignocellulosic waste is the most abundant biorenewable biomass on earth, and its hydrolysis releases highly valued reducing sugars. However, the presence of lignin in the biopolymeric structure makes it highly resistant to solubilization thereby hindering the hydrolysis of cellulose and hemicellulose. Microorganisms are known for their potential complex enzymes that play a dominant role in lignocellulose conversion. Therefore, the current study was designed to isolate and screen potential microorganisms for their selective delignification ability for the pretreatment of lignocellulosic biomass. An extensive isolation and screening procedure yielded 36 desired isolates (22 bacteria, 7 basidiomycete fungi, and 7 filamentous fungi). Submerged cultivation of these desired microorganisms revealed 4 bacteria and 10 fungi with potent lignocellulolytic enzyme activities. The potent isolates were identified as Pleurotus, Trichoderma, Talaromyces, Bacillus, and Chryseobacterium spp. confirmed by morphological and molecular identification. The efficiency of these strains was determined through enzyme activities, and the degraded substrates were analyzed through scanning electron microscopy (SEM) and X-ray diffraction (XRD). Among all isolated microbes, Pleurotus spp. were found to have high laccase activity. The cellulose-decomposing and selective delignification strains were subjected to solid-state fermentation (SSF). SSF of field waste corn stalks as a single-carbon source provides Pleurotus spp. better condition for the secretion of ligninolytic enzymes. These isolated ligninolytic enzymes producing microorganisms may be used for the effective pretreatment of lignocellulosic agricultural wastes for the production of high value-added natural products by fermentation.
Collapse
|
10
|
Debnath R, Das S, Mukhopadhyay A, Saha T. Enrichment of laccase production by Phoma herbarum isolate KU4 under solid-state fermentation by optimizing RSM coefficients using genetic algorithm. Lett Appl Microbiol 2021; 73:515-528. [PMID: 34263965 DOI: 10.1111/lam.13537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
The process parameters were optimized to obtain enhanced enzyme activity from the fungus Phoma herbarum isolate KU4 using rice straw and saw dust as substrate under solid-state fermentation using Response surface methodology (RSM). Genetic algorithm was used to validate the RSM for maximum laccase production. Six variables, viz., pH of the media, initial moisture content, copper sulphate concentration, concentration of tannic acid, inoculum concentration and incubation time were found to be effective and optimized for enhanced production. Maximum laccase production was achieved by RSM at pH 5·0 and 86% of initial moisture content of the culture medium, 150 µmol l-1 of CuSO4 , 1·5% tannic acid and 0·128 g inoculum g-1 dry substrate inoculum size on the fourth day of fermentation. The highest laccase activity was observed as 79 008 U g-1 , which is approximately sixfold enhanced production compared to the unoptimized condition (12 085·26 U g-1 ).
Collapse
Affiliation(s)
- R Debnath
- Department of Molecular Biology & Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| | - S Das
- Department of Molecular Biology & Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| | - A Mukhopadhyay
- Department of Computer Science & Engineering, Faculty of Engineering Technology & Management, University of Kalyani, Kalyani, West Bengal, India
| | - T Saha
- Department of Molecular Biology & Biotechnology, Faculty of Science, University of Kalyani, Kalyani, India
| |
Collapse
|
11
|
Ye Y, Chen Y, Hou Y, Yu H, Zhu L, Sun Y, Zhou M, Chen Y, Dong M. Two new benzoic acid derivatives from endophytic fungus Aspergillus versicolor. Nat Prod Res 2020; 36:223-228. [PMID: 32524860 DOI: 10.1080/14786419.2020.1777121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Two new benzoic acid derivatives, named methyl(S)-3-hydroxy-4-(2- hydroxy -6-methylheptan-2-yl)benzoate (1) and 2-hydroxy-3-(6- hydroxy-6-methylhept-1-en-2-yl)benzoic acid (2), were isolated from the ethanol extract of an endophytic fungus Aspergillus versicolor derived from the medicinal plant Euphorbia royleana. The structures of compounds (1-2) were elucidated using NMR and MS methods.
Collapse
Affiliation(s)
- Yanqing Ye
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Yanjun Chen
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Yuting Hou
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Hongmei Yu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Lijun Zhu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Yanqi Sun
- School of Chemistry and Environment, Yunnan Minzu University, Kunming, P.R. China
| | - Min Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, P.R. China
| | - Yijian Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, P.R. China
| | - Miao Dong
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, P.R. China
| |
Collapse
|
12
|
Kamel NM, Abdel-Motaal FF, El-Zayat SA. Endophytic fungi from the medicinal herb Euphorbia geniculata as a potential source for bioactive metabolites. Arch Microbiol 2019; 202:247-255. [DOI: 10.1007/s00203-019-01740-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 11/30/2022]
|
13
|
Noman E, Al-Gheethi A, Mohamed RMSR, Talip BA. Myco-Remediation of Xenobiotic Organic Compounds for a Sustainable Environment: A Critical Review. Top Curr Chem (Cham) 2019; 377:17. [DOI: 10.1007/s41061-019-0241-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 05/08/2019] [Indexed: 01/06/2023]
|