1
|
Xu Y, Xia H, Zhang Q, Zhang L. An original strategy and evaluation of a reaction mechanism for recovering valuable metals from zinc oxide dust containing intractable germanide. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133766. [PMID: 38368683 DOI: 10.1016/j.jhazmat.2024.133766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/06/2024] [Accepted: 02/08/2024] [Indexed: 02/20/2024]
Abstract
A novel leaching-roasting-leaching strategy was used to recover valuable metals from zinc oxide dust containing intractable germanide. In the ultrasonic enhanced oxidation leaching stage, potassium permanganate and ultrasonication were introduced to strengthen the dissolution of sulphide. During the roasting stage, sodium carbonate and magnesium nitrate were added to promote the reaction between the insoluble tetrahedral germanium dioxide and complex forms of germanium-containing compounds. Simultaneously, the sulphur produced in the ultrasonic enhanced oxidation leaching stage was used to change the phases of tin dioxide and zinc ferrite, thereby releasing germanium into its lattice. Finally, the germanium in the roasting slag was recovered by conventional leaching, and the grades of lead and tin in the residue were enriched to 35.21% and 11.31%, respectively. Compared with the conventional acid leaching process of enterprise, the total reaction time of this method was shortened to 80 min, and the recovery rates of zinc and germanium increased by approximately 10% and 40%, respectively. The entire process is clean and environmentally friendly and does not cause adverse effects on the recovery of lead and tin. Overall, this study provides new insights into the design of valuable metal recovery methods for zinc oxide dust containing intractable germanide.
Collapse
Affiliation(s)
- Yingjie Xu
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology, Kunming 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, Yunnan, China
| | - Hongying Xia
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology, Kunming 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, Yunnan, China.
| | - Qi Zhang
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology, Kunming 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgy and Energy Engineering Kunming University of Science and Technology, Kunming 650093, Yunnan, China; State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Yunnan Provincial Key Laboratory of Intensification Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China; Key Laboratory of Unconventional Metallurgy, Ministry of Education, Kunming 650093, Yunnan, China.
| |
Collapse
|
2
|
Bao S, Chen B, Zhang Y, Ren L, Xin C, Ding W, Yang S, Zhang W. A comprehensive review on the ultrasound-enhanced leaching recovery of valuable metals: Applications, mechanisms and prospects. ULTRASONICS SONOCHEMISTRY 2023; 98:106525. [PMID: 37453257 PMCID: PMC10371852 DOI: 10.1016/j.ultsonch.2023.106525] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/29/2023] [Accepted: 07/09/2023] [Indexed: 07/18/2023]
Abstract
In recent two decades, ultrasound has been broadly applied to the hydrometallurgical leaching process to recover valuable metals within raw materials, aiming to solve the shortcomings of the conventional leaching process, including relatively low leaching recovery, long leaching duration, high reagent usage, high energy consumption and so on. The present work focuses on a comprehensive overview of the ultrasound-enhanced leaching of various metals, such as common nonferrous and ferrous metals, rare metals, rare earth elements, and precious metals, from raw metal ores and secondary resources. Moreover, the enhanced leaching mechanisms by ultrasound are discussed in detail and summarized based on the improvement of leaching kinetics, enhancement of the mass transfer and diffusion of lixiviants, and promotion of the oxidative conversion of metals from insoluble to soluble states. Lastly, the challenges and outlooks of future research on the leaching recovery for valuable metals with the assistance of ultrasound irradiation are proposed.
Collapse
Affiliation(s)
- Shenxu Bao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, PR China; State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| | - Bo Chen
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China.
| | - Yimin Zhang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, PR China; State Environmental Protection Key Laboratory of Mineral Metallurgical Resources Utilization and Pollution Control, Wuhan University of Science and Technology, Wuhan 430081, PR China; Hubei Collaborative Innovation Center for High Efficient Utilization of Vanadium Resources, Wuhan University of Science and Technology, Wuhan 430081, PR China
| | - Liuyi Ren
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, PR China
| | - Chunfu Xin
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Wei Ding
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Siyuan Yang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China; Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan 430070, PR China
| | - Wencai Zhang
- Department of Mining and Minerals Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA
| |
Collapse
|
3
|
Lin G, Li J, Zeng B, Wang W, Li C, Zhang L. Leaching of rubidium from biotite ore by chlorination roasting and ultrasonic enhancement. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
4
|
Bou-Hamdan KF, Abbas AH. Utilizing Ultrasonic Waves in the Investigation of Contact Stresses, Areas, and Embedment of Spheres in Manufactured Materials Replicating Proppants and Brittle Rocks. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2021. [DOI: 10.1007/s13369-021-06409-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
AbstractIn the oil and gas industry, hydraulic fracturing (HF) is a common application to create additional permeability in unconventional reservoirs. Using proppant in HF requires understanding the interactions with rocks such as shale, and the mechanical aspects of their contacts. However, these studies are limited in literature and inconclusive. Therefore, the current research aims to apply a novel method, mainly ultrasound, to investigate the proppant embedment phenomena for different rocks. The study used proppant materials that are susceptible to fractures (glass) and others that are hard and do not break (steel). Additionally, the materials used to represent brittle shale rocks (polycarbonate and phenolic) were based on the ratio of elastic modulus to yield strength (E/Y). A combination of experimental and numerical modeling was used to investigate the contact stresses, deformation, and vertical displacement. The results showed that the relation between the stresses and ultrasound reflection coefficient follows a power-law equation, which validated the method application. From the experiments, plastic deformation was encountered in phenolic surfaces despite the corresponding contacted material. Also, the phenolic stresses showed a difference compared to polycarbonate for both high and low loads, which is explained by the high attenuation coefficient of phenolic that limited the quality of the reflected signal. The extent of vertical displacements surrounding the contact zone was greater for the polycarbonate materials due to the lower E/Y, while the phenolic material was limited to smaller areas not exceeding 50% of polycarbonate for all tested load conditions. Therefore, the study confirms that part of the contact energy in phenolic material was dissipated in the plastic deformation, indicating greater proppant embedment, and leading to a loss in fracture conductivity for rocks of higher E/Y.
Collapse
|