1
|
Singh H, Saima, Aggarwal V, Kachore A, Bala E, Kumar R, Sharma RK, Verma PK. Carbon dots: An emerging food analysis nanoprobes for detection of contaminants. Food Chem 2025; 485:143180. [PMID: 40367681 DOI: 10.1016/j.foodchem.2025.143180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/30/2024] [Accepted: 01/31/2025] [Indexed: 05/16/2025]
Abstract
Carbon dots are the new class of nanomaterials with a size range of 10 nm or less. These are associate with the important material properties such as good biocompatibility, fluorescent nature, small size and easy to synthesize with low toxicity which make them the first choice over the fluorescent inorganic materials and dyes, to be used as biocompatible nanoprobes for the detection of food adulterations. Herein, we have focused on the methods of synthesis of these tiny zero dimensions, fluorescent nanomaterials (CDs), their properties, mechanism of fluorescence, and lastly their wide applications in food analysis which include the detection of additives, heavy metal ions, organic pollutants, foodborne microbes, antibiotic and pesticides. Further, these nanomaterials open the scope to be used as nanoprobes in the food safety concern. Additionally, we discussed the challenges and future scope of CDs as an auspicious and emerging nanomaterial to be used in the food industries.
Collapse
Affiliation(s)
- Hemant Singh
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Saima
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India.
| | - Varun Aggarwal
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Ankit Kachore
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Ekta Bala
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India
| | - Rakesh Kumar
- Laboratory of Organic Chemistry, Department of Chemistry, Central University of Punjab, Bathinda 151401, India
| | - Rohit K Sharma
- Department of Chemistry & Centre for Advanced Studies in Chemistry, Panjab University, Chandigarh 160014, India
| | - Praveen Kumar Verma
- School of Advanced Chemical Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh 173229, India.
| |
Collapse
|
2
|
Li X, Meng Z, Gong S, Liang Y, Zhang Y, Xu X, Wang Z, Wang S. Synthesis of a new camphor-derived carboxylesterase-activated fluorescent probe for sensitive detection of dimethoate residues in agricultural products and its applications in biological systems. Food Chem 2025; 464:141625. [PMID: 39426261 DOI: 10.1016/j.foodchem.2024.141625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
In this paper, a camphor-derived enzyme activatable probe CPA was synthesized for detecting dimethoate pesticide. The ester bond of probe CPA could be selectively hydrolyzed and fragmented in the presence of carboxylesterase (CE), which caused a remarkably enhanced green fluorescence signal at 501 nm. Probe CPA could function as an effective fluorescent platform for the sequential detection of dimethoate due to the obvious inhibition effect of dimethoate on the activity of CE. The detection limit of probe CPA to dimethoate was computed to be 0.1104 μg/mL. Even more important, CPA was effectively utilized for quantitative determination of trace dimethoate residues in agricultural products including fresh vegetables and fruits with good accuracy. Furthermore, the probe CPA could realize the detection of dimethoate in living cells and zebrafish. This work is expected to provide a highly sensitive and accurate analytical method for detecting organophosphorus pesticide residues in food samples and biological systems.
Collapse
Affiliation(s)
- Xinyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhiyuan Meng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shuai Gong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yueyin Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xu Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglong Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Shifa Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Bhattacharya T, Joshi R, Tufa LT, Goddati M, Lee J, Tewari A, Cho BK. l-Cysteine-Modified Carbon Dots Derived from Hibiscus rosa-sinensis for Thiram Pesticides Identification on Edible Perilla Leaves. ACS OMEGA 2024; 9:47647-47660. [PMID: 39651080 PMCID: PMC11618407 DOI: 10.1021/acsomega.4c07090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/20/2024] [Accepted: 11/05/2024] [Indexed: 12/11/2024]
Abstract
In this work, environmentally friendly fluorescent carbon dots (C-dots) were developed for the purpose of thiram identification in the leaves of perilla plants. Powdered plant petals from Hibiscus rosa-sinensis were hydrothermally combined to create C-dots. Analytical techniques, such as scanning electron microscopy, energy dispersive X-ray spectroscopy, high resolution transmission electron microscopy, Raman spectroscopy, ultraviolet spectroscopy, Fourier transmission infrared spectroscopy, and photoluminescence were employed to examine the properties of C-dots. To enhance their functionality, an l-cysteine dopant was added to the C-dots. Since this process produces highly soluble C-dots in water, it is simple, inexpensive, and safe. The excitation process and the size of the blue luminescent C-dots both affect their photoluminescent activity. Furthermore, thiram in aqueous solutions was effectively identified by using the generated C-dots. Additionally, the ImageJ program was used to measure the colors red, green, and blue. High-resolution TEM (HR-TEM) revealed that the l-cysteine-doped carbon dots had an average particle size of 2.208 nm. Additionally, the lattice fringes observed in the HRTEM image showed a d-spacing of around 0.285 nm, which nearly corresponds to the (100) lattice plane of graphitic carbon. A Raman spectrum study was also performed to investigate the relationship between carbon dots and pesticides in the actual samples. In the end, thiram levels in perilla leaves with nondoped and doped C-dots could be distinguished with 100% accuracy using the constructed partial least-squares discriminant analysis machine learning model. The information gathered therefore demonstrated that the synthetic C-dots successfully and efficiently provide rapid and sensitive detection of hazardous pesticides in edible plant products.
Collapse
Affiliation(s)
- Tanima Bhattacharya
- Department
of Biosystems Machinery Engineering, Chungnam
National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Faculty
of Applied Science, Lincoln University College, Wisma Lincoln, No.12-18, SS 6/12, Petaling Jaya, Selangor 47301, Malaysia
| | - Rahul Joshi
- Department
of Biosystems Machinery Engineering, Chungnam
National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Lemma Teshome Tufa
- Institute
of Materials Chemistry, Chungnam National
University, Daejeon 34134, South Korea
- Department
of Chemistry, Adama Science and Technology
University, P.O. Box 1888, Adama, Ethiopia
| | - Mahendra Goddati
- Department
of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jaebeom Lee
- Department
of Chemistry, Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ameeta Tewari
- Department
of Chemistry, M.B.G.P.G College Haldwani,
Kumaun University, Nainital, Uttarakhand 263139, India
| | - Byoung-Kwan Cho
- Department
of Biosystems Machinery Engineering, Chungnam
National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Department
of Smart Agriculture Systems, College of Agricultural and Life Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic
of Korea
| |
Collapse
|
4
|
Mankoti M, Meena SS, Mohanty A. Exploring the potential of eco-friendly carbon dots in monitoring and remediation of environmental pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43492-43523. [PMID: 38713351 DOI: 10.1007/s11356-024-33448-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Photoluminescent carbon dots (CDs) have garnered significant interest owing to their distinctive optical and electronic properties. In contrast to semiconductor quantum dots, which incorporated toxic elements in their composition, CDs have emerged as a promising alternative, rendering them suitable for both environmental and biological applications. CDs exhibit astonishing features, including photoluminescence, charge transfer, quantum confinement effect, and biocompatibility. Recently, CDs derived from green sources have drawn a lot of attention due to their strong photostability, reduced toxicity, better biocompatibility, enhanced fluorescence, and simplicity. These attributes have shown great promise in the areas of LED technology, bioimaging, photocatalysis, drug delivery, biosensing, and antibacterial activity. In contrast, this review offers a comprehensive overview of various green sources utilized to produce CDs and methodologies, along with their merits and demerits, with a notable emphasis on physiochemical properties. Additionally, the paper provides insight into the bibliometric analysis and recent advancements of CDs in sensing, photocatalysis, and antibacterial activity. In this field, extensive research is underway, and a total of 7,438 articles have been identified. Among these, 4242 articles are dedicated to sensing applications, while 1518 and 1678 focus on adsorption and degradation. Carbon dots demonstrate exceptional sensing capabilities within the nanomolar range with a selectivity of up to 95% for pollutants. They exhibit excellent degradation efficiency exceeding 90% within 10-130 min and possess an adsorption capacity from 100 to 800 mg/g. These fascinating qualities render them suitable for diverse applications.
Collapse
Affiliation(s)
- Megha Mankoti
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Sumer Singh Meena
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India
| | - Anee Mohanty
- Department of Biotechnology, Dr B R Ambedkar National Institute of Technology, Jalandhar, Punjab, India.
| |
Collapse
|
5
|
Xie W, Liu J, Qu Y, Du F. Construction of a ratiometric fluorescent sensing platform based on near-infrared carbon dots for organophosphorus pesticides detection. ANAL SCI 2023:10.1007/s44211-023-00319-3. [PMID: 36944823 DOI: 10.1007/s44211-023-00319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 03/04/2023] [Indexed: 03/23/2023]
Abstract
In this work, a convenient ratiometric fluorescent platform was designed to measure organophosphorus pesticides (OPs) based on acetylcholinesterase (AChE), acetylthiocholine (ATCh), manganese dioxide nanosheets (MnO2), near-infrared carbon dots (RCDs) and o-phenylenediamine (OPD). In this platform, a direct oxidation of OPD by MnO2 generated the luminescent product 2,3-diaminophenolazine (DAP) through intrinsic oxidase activity, while RCDs served as a fluorescent reference indicator. In the presence of AChE and ATCh, the enzymatic hydrolysate thiocholine (TCh) would reduce MnO2 nanosheets to Mn2+, leading to the quenching of DAP fluorescence. On the other hand, OPs can inhibit the catabolism of ATCh by AChE thus acting as a recognizer of OPs. According to these reactions, OPs were quantitatively analyzed by the intensity ratio of fluorescence emitted from RCDs and DAP (F560/F676). The constructed platform can detect OPs with the range of 0.2-0.6 μM with a detection limit of 4.3 nM. Figure A ratiometric fluorescent probe based on carbon dots was obtained and using it to determine the concentration of organophosphorus pesticides.
Collapse
Affiliation(s)
- Wenfei Xie
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Jinrui Liu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Yunting Qu
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China
| | - Fangkai Du
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Key Laboratory of Applied Analytical Chemistry (Guangxi Minzu University), Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning, 530006, China.
| |
Collapse
|
6
|
Deng WW, Zang CR, Li QC, Sun B, Mei XP, Bai L, Shang XM, Deng Y, Xiao YQ, Ghiladi RA, Lorimer GH, Zhang XJ, Wang J. Hydrothermally Derived Green Carbon Dots from Broccoli Water Extracts: Decreased Toxicity, Enhanced Free-Radical Scavenging, and Anti-Inflammatory Performance. ACS Biomater Sci Eng 2023; 9:1307-1319. [PMID: 36744996 DOI: 10.1021/acsbiomaterials.2c01537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Biomass carbon dots (CDs) derived from natural plants possess the advantages of low cost, photostability, and excellent biocompatibility, with potential applications in chemical sensing, bioimaging, and nanomedicine. However, the development of biomass CDs with excellent antioxidant activity and good biocompatibility is still a challenge. Herein, we propose a hypothesis for enhancing the antioxidant capacity of biomass CDs based on precursor optimization, extraction solvent, and other conditions with broccoli as the biomass. Compared to broccoli water extracts, broccoli powders, and broccoli organic solvent extracts, CDs derived from broccoli water extracts (BWE-CDs) have outstanding antioxidant properties due to the abundant C═C, carbonyl, and amino groups on their surface. After optimization of the preparation condition, the obtained BWE-CDs exhibit excellent free-radical scavenging activity with an EC50 of 68.2 μg/mL for DPPH• and 22.4 μg/mL for ABTS•+. Cytotoxicity and zebrafish embryotoxicity results indicated that BWE-CDs have lower cytotoxicity and better biocompatibility than that of CDs derived from organic solvents. In addition, BWE-CDs effectively scavenged reactive oxygen species (ROS) in A549 cells, 293T cells, and zebrafish, as well as eliminating inflammation in LPS-stimulated zebrafish. Mechanistic studies showed that the anti-inflammatory effect of BWE-CDs was dependent on the direct reaction of CDs with free radicals, the regulation of NO levels, and the upregulation of the expression of SOD and GPX-4. This work indicates that the antioxidant activity of CDs could be enhanced by using solvent extracts of biomass as precursors, and the obtained BWE-CDs exhibit characteristics of greenness, low toxicity, and excellent antioxidant and anti-inflammatory activities, which suggests the potential promising application of BWE-CDs as an antioxidant nanomedicine for inflammatory therapy.
Collapse
Affiliation(s)
- Wen-Wen Deng
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Chuan-Ru Zang
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Qiu-Chen Li
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Bo Sun
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Xue-Ping Mei
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Lu Bai
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Xin-Miao Shang
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Ying Deng
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Ya-Qian Xiao
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Reza A Ghiladi
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - George H Lorimer
- Department of Chemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Xue-Ji Zhang
- School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, Guangzhou, China
| | - Jun Wang
- Autism & Depression Diagnosis and Intervention Institute, National 111 Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, Hubei, China
| |
Collapse
|