1
|
El-Sayed AEKB, Almutairi AW. Nutrient balance for enhanced recovery of stressed Spirulina platensis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:56685-56696. [PMID: 39283545 DOI: 10.1007/s11356-024-34979-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024]
Abstract
The failure of mass production of Spirulina plateaus can be attributed to an imbalance of nutrients (C:N) and an increase in accumulated sodium ions, coupled with the traditional harvesting process. The current study aims at the recovery of stressed and red cultures of Spirulina platensis as well as enhanced phycocyanin accumulation. The stressed Spirulina platensis cultures were obtained from a local Egyptian Spirulina production farms, which were further subjected to water analyses after removing the Spirulina biomass. Optimization was performed within 300-ml water path photobioreactor. Spirulina platensis samples were incubated with Zarrouk medium comparing with those modified using ammonium bicarbonate or ammonium acetate instead of sodium bicarbonate. Continuous batching was performed every 12 days during three sequenced batches. Growth measurements (dry weight and pigments) were performed along the incubation time. It was found that carbon content of the growth medium seems to be more effective in Spirulina growth and biomass characteristics. Under different carbon sources, acetate resulted in the maximum dry weight of 1.48 g·l-1 and recovery percentage of 463.3%. Such effect was extended along the different incubation batches. Various carbon concentrations revealed that moderate concentration of carbon in the form of acetate (0.699 g·l-1) leads to the maximum growth under the same nitrogen content. A similar trend was observed with chlorophyll and phycocyanin accumulation, while carotenoids showed the opposite manner.
Collapse
Affiliation(s)
| | - Adel W Almutairi
- Department of Biological Sciences, Faculty of Science and Arts, King Abdulaziz University, Rabigh, 21911, Saudi Arabia.
| |
Collapse
|
2
|
Akhtar S, Pranay K, Kumari K. Personal protective equipment and micro-nano plastics: A review of an unavoidable interrelation for a global well-being hazard. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2023; 6:100055. [PMID: 37102160 PMCID: PMC10089666 DOI: 10.1016/j.heha.2023.100055] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/28/2023]
Abstract
The usage and the demand for personal protective equipments (PPEs) for our day-to-day survival in this pandemic period of COVID-19 have seen a steep rise which has consequently led to improper disposal and littering. Fragmentation of these PPE units has eventually given way to micro-nano plastics (MNPs) emission in the various environmental matrices and exposure of living organisms to these MNPs has proven to be severely toxic. Numerous factors contribute to the toxicity imparted by these MNPs that mainly include their shape, size, functional groups and their chemical diversity. Even though multiple studies on the impacts of MNPs toxicity are available for other organisms, human cell line studies for various plastic polymers, other than the most common ones namely polyethylene (PE), polystyrene (PS) and polypropylene (PP), are still at their nascent stage and need to be explored more. In this article, we cover a concise review of the literature on the impact of these MNPs in biotic and human systems focusing on the constituents of the PPE units and the additives that are essentially used for their manufacturing. This review will subsequently identify the need to gather scientific evidence at the smaller level to help combat this microplastic pollution and induce a more in-depth understanding of its adverse effect on our existence.
Collapse
Affiliation(s)
- Shaheen Akhtar
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| | - Kumar Pranay
- Department of Biochemistry, Indira Gandhi Institute of Medical Sciences (IGIMS), Patna 800014, Bihar, India
| | - Kanchan Kumari
- Kolkata Zonal Centre, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata 700107, West Bengal, India
| |
Collapse
|
3
|
Cui J, Qi M, Zhang Z, Gao S, Xu N, Wang X, Li N, Chen G. Disposal and resource utilization of waste masks: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:19683-19704. [PMID: 36653687 PMCID: PMC9848032 DOI: 10.1007/s11356-023-25353-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Waste masks pose a serious threat to the environment, including marine plastic pollution and soil pollution risks caused by landfills since the outbreak of COVID-19. Currently, numerous effective methods regarding disposal and resource utilization of waste masks have been reported, containing physical, thermochemical, and solvent-based technologies. As for physical technologies, the mechanical properties of the mask-based materials could be enhanced and the conductivity or antibacterial activity was endowed by adding natural fibers or inorganic nanoparticles. Regarding thermochemical technologies, catalytic pyrolysis could yield considerable hydrogen, which is an eco-friendly resource, and would mitigate the energy crisis. Noticeably, the solvent-based technology, as a more convenient and efficient method, was also considered in this paper. In this way, soaking the mask directly in a specific chemical reagent changes the original structure of polypropylene and obtains multi-functional materials. The solvent-based technology is promising in the future with the researches of sustainable and universally applicable reagents. This review could provide guidance for utilizing resources of waste masks and address the issues of plastic pollution.
Collapse
Affiliation(s)
- Jiale Cui
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Mo Qi
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Ziyi Zhang
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Shibo Gao
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Nuo Xu
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University, Tianjin, 300072, China
| | - Xiaohua Wang
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| | - Ning Li
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University, Tianjin, 300072, China.
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin Key Lab of Biomass Wastes Utilization, Tianjin University, Tianjin, 300072, China
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin, 300134, China
| |
Collapse
|
4
|
Iwuozor KO, Emenike EC, Stephen AA, Kevin OS, Adeleke J, Adeniyi AG. Thermochemical recycling of waste disposable facemasks in a non-electrically powered system. LOW-CARBON MATERIALS AND GREEN CONSTRUCTION 2023; 1:12. [PMCID: PMC10069943 DOI: 10.1007/s44242-023-00010-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
The COVID-19 pandemic encouraged the use of plastic-based personal protective equipment (PPE), which aided greatly in its management. However, the increased production and usage of these PPEs put a strain on the environment, especially in developing and underdeveloped countries. This has led various researchers to study low-cost and effective technologies for the recycling of these materials. One such material is disposable facemasks. However, previous studies have only been able to engage electrically powered reactors for their thermochemical conversion, which is a challenge as these reactors cannot be used in regions with an insufficient supply of electricity. In this study, the authors utilized a biomass-powered reactor for the conversion of waste disposable facemasks and almond leaves into hybrid biochar. The reactor, which is relatively cheap, simple to use, environmentally friendly, and modified for biochar production, is biomass-powered. The co-carbonization process, which lasted 100 min, produced a 46% biochar yield, which is higher than previously obtained biochar yields by other researchers. The biochar thus obtained was characterized to determine its properties. FTIR analysis showed that the biochar contained functional groups such as alkenes, alkynes, hydroxyls, amines, and carbonyls. The EDX analysis revealed that the biochar was primarily made of carbon, tellurium, oxygen, and calcium in the ratios of 57%, 19%, 9%, and 7%, respectively. The inclusion of the facemask decreased the surface area and porosity of the biochar material, as evidenced by its surface area and pore characteristics.
Collapse
Affiliation(s)
- Kingsley O. Iwuozor
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Ebuka Chizitere Emenike
- Department of Pure and Industrial Chemistry, Nnamdi Azikiwe University, P. M. B. 5025, Awka, Nigeria
| | - Agbana Abiodun Stephen
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | | | - Joy Adeleke
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
| | - Adewale George Adeniyi
- Department of Chemical Engineering, University of Ilorin, P. M. B. 1515, Ilorin, Nigeria
- Chemical Engineering Department, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
5
|
Almutairi AW. Evaluation of halophilic microalgae isolated from Rabigh Red Sea coastal area for biodiesel production: Screening and biochemical studies. Saudi J Biol Sci 2022; 29:103339. [PMID: 35770271 PMCID: PMC9234712 DOI: 10.1016/j.sjbs.2022.103339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 05/04/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
In the present study, different water samples from Red Sea coastal area at Rabigh city, Saudi Arabia were studied for their dominant algal species. Microalgal isolation was carried out based on dilution method and morphologically examined using F/2 as a growth medium. Dry weight and main biochemical composition (protein, carbohydrates, lipids) of all species were performed at the end of the growth, and biodiesel characteristics were estimated. Nannochloropsis sp., Dunaliella sp., Tetraselmis sp., Prorocentrum sp., Chlorella sp., Nitzschia sp., Coscinodiscus sp., and Navicula sp. were the most dominant species in the collected water samples and were used for further evaluation. Nannochloropsis sp. surpassed all other isolates in concern of biomass production with the maximum recorded dry weight of 0.89 g L−1, followed by Dunaliella sp. (0.69 g L−1). The highest crude protein content was observed in Nitzschia sp. (38.21%) and Dunaliella sp. (18.01%), while Nannochloropsis sp. showed 13.38%, with the lowest recorded lipid content in Coscinodiscus sp. (10.09%). Based on the growth, lipid content, and biodiesel characteristics, the present study suggested Dunaliella sp. and Nitzschia sp. as promising candidates for further large-scale biodiesel production.
Collapse
Affiliation(s)
- Adel W Almutairi
- Biological Sciences Department, Faculty of Science & Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| |
Collapse
|
6
|
Harisankar S, Prashanth PF, Nallasivam J, Vinu R. Optimal use of glycerol co-solvent to enhance product yield and its quality from hydrothermal liquefaction of refuse-derived fuel. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-15. [PMID: 35646507 PMCID: PMC9126101 DOI: 10.1007/s13399-022-02793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
Refuse-derived fuels (RDF) are rich in resources that make them an attractive feedstock for the production of energy and biofuels. Hydrothermal liquefaction (HTL) is a promising thermochemical conversion technology to handle wet feedstocks and convert them to valuable bio-crude, bio-char and aqueous products. This study highlights the advantages of using glycerol as the co-solvent along with water in different proportions to produce bio-crude from RDF via HTL. The ratio of water:glycerol (vol.%:vol.%) was varied for each experiment (100:0, 90:10, 80:20, 70:30, 60:40, 50:50), and the product yields and their quality were studied. The results demonstrate that increasing the proportion of glycerol until 50 vol.% in the solvent enhances the bio-crude yield (36.2 wt.%) and its higher heating value (HHV) (30.9 MJ kg-1). Deoxygenation achieved in the bio-crude was 42%. The production of bio-char was minimum (9.5 wt.%) at 50 vol.% glycerol with HHV of 31.9 MJ kg-1. The selectivity to phenolic compounds in the bio-crude increased, while that of cyclic oxygenates decreased when the glycerol content was more than 20 vol.%. The gas-phase analysis revealed that the major deoxygenation pathway was decarboxylation. The yield of aqueous products drastically increased with the addition of glycerol. The minimum amount of glycerol in the co-solvent that favours an energetically feasible process with low carbon footprint is 30 vol.%. Using 50 vol.% glycerol resulted in the highest energy recovery in the bio-crude and bio-char (80%), the lowest energy consumption ratio (0.43) and lowest environmental factor (0.1). The mass-based process mass intensity factor, calculated based on only bio-crude and bio-char as the valuable products, decreased with an increase in addition of glycerol, while it was close to unity when the aqueous phase is also considered as a valuable product.
Collapse
Affiliation(s)
- S. Harisankar
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036 India
| | - P. Francis Prashanth
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036 India
| | - Jeganathan Nallasivam
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036 India
| | - R. Vinu
- Department of Chemical Engineering and National Center for Combustion Research and Development, Indian Institute of Technology Madras, Chennai, 600036 India
| |
Collapse
|
7
|
Pizarro-Ortega CI, Dioses-Salinas DC, Fernández Severini MD, Forero López AD, Rimondino GN, Benson NU, Dobaradaran S, De-la-Torre GE. Degradation of plastics associated with the COVID-19 pandemic. MARINE POLLUTION BULLETIN 2022; 176:113474. [PMID: 35231785 PMCID: PMC8866080 DOI: 10.1016/j.marpolbul.2022.113474] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/12/2022] [Accepted: 02/15/2022] [Indexed: 05/08/2023]
Abstract
The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). Numerous studies have reported the occurrence of PPE in the marine environment. However, their degradation in the environment and consequences are poorly understood. Studies have reported that face masks, the most abundant type of PPE, are significant sources of microplastics due to their fibrous microstructure. The fibrous material (mostly consisting of polypropylene) exhibits physical changes in the environment, leading to its fracture and detachment of microfibers. Most studies have evaluated PPE degradation under controlled laboratory conditions. However, in situ degradation experiments, including the colonization of PPE, are largely lacking. Although ecotoxicological studies are largely lacking, the first attempts to understand the impact of MPs released from face masks showed various types of impacts, such as fertility and reproduction deficiencies in both aquatic and terrestrial organisms.
Collapse
Affiliation(s)
| | | | - Melisa D Fernández Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Ana D Forero López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Camino La Carrindanga, km 7.5, Edificio E1, Bahía Blanca, B8000FWB Buenos Aires, Argentina
| | - Guido Noé Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas. Universidad Nacional de Córdoba, Ciudad Universitaria (X5000HUA), Córdoba, Argentina
| | - Nsikak U Benson
- Department of Chemistry, Covenant University, Km 10 Idiroko Road, Ota, Nigeria
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Universitätsstr. 5, Essen, Germany
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru.
| |
Collapse
|